タグ「直線」の検索結果

20ページ目:全2462問中191問~200問を表示)
東北学院大学 私立 東北学院大学 2016年 第4問
点$\mathrm{A}(8,\ 6)$を中心とし半径が$r$の円と円$C:x^2+y^2=4$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わっているとき,次の問いに答えよ.ただし,点$\mathrm{P}$の$x$座標は点$\mathrm{Q}$の$x$座標より小さいとする.

(1)$r$の値の範囲を求めよ.
(2)直線$\mathrm{AP}$が円$C$の接線であるとき,$r$の値と点$\mathrm{P}$の座標を求めよ.
東北医科薬科大学 私立 東北医科薬科大学 2016年 第3問
放物線$y=1-4x^2$上の点$\mathrm{P}(a,\ b)$と,この放物線の点$\mathrm{P}$を通る接線を$\ell$とおく.また,直線$\ell$と放物線$y=-x^2+2x+4$とで囲まれる図形の面積を$S(a)$とおく.このとき,次の問に答えなさい.

(1)$a=0$のとき,接線$\ell$と放物線$y=-x^2+2x+4$の交点の$x$座標は$x=[アイ]$,$[ウ]$である.また,$\displaystyle S(0)=\frac{[エオ]}{[カ]}$である.

(2)$0 \leqq b$となるような$a$の値の範囲は$\displaystyle \frac{[キク]}{[ケ]} \leqq a \leqq \frac{[コ]}{[サ]}$である.

(3)接線$\ell$の方程式は$y=-[シ]ax+[ス]a^2+[セ]$であり,
$\displaystyle S(a)=\frac{[ソタ]}{[チ]} \left( [ツ]a^2+[テ]a+[ト] \right)^{\frac{\mkakko{ナ}}{\mkakko{ニ}}}$となる.
また$S(a)$が最小となるのは$\displaystyle a=\frac{[ヌネ]}{[ノ]}$のときである.
名城大学 私立 名城大学 2016年 第1問
次の$[ ]$を埋めよ.

(1)$\displaystyle x=\frac{2}{\sqrt{5}+1},\ y=\frac{\sqrt{5}+1}{2}$のとき,$x^2+y^2=[ア]$,$x^2-y^2=[イ]$である.

(2)関数$y=-2x^2+6x-5 (0 \leqq x \leqq 2)$の最大値は$[ウ]$,最小値は$[エ]$である.
(3)円$C_1:x^2+y^2=1$上の点$\mathrm{P}(\cos \theta,\ \sin \theta)$と点$\mathrm{A}(3,\ 0)$の中点$\mathrm{Q}$の座標は$[オ]$である.これより,$\mathrm{P}$が$C_1$上をもれなく動くとき,$\mathrm{Q}$の描く軌跡は円であり,その方程式は$[カ]$である.
(4)放物線$C_2:y=x^2-2x$と直線$\ell:y=x$がある.$C_2$と$x$軸によって囲まれる部分の面積は$[キ]$であり,$C_2$と$\ell$によって囲まれる部分の面積は$[ク]$である.
津田塾大学 私立 津田塾大学 2016年 第2問
$a,\ b,\ c$は定数とする.関数$f(x)=x^3+ax^2+bx+c$は$x=2$で極値をとり,曲線$y=f(x)$は点$(1,\ 0)$で直線$y=x-1$に接している.

(1)$a,\ b,\ c$の値を求めよ.
(2)曲線$y=f(x)$と直線$y=x-1$で囲まれた図形の面積を求めよ.
津田塾大学 私立 津田塾大学 2016年 第1問
次の問に答えよ.

(1)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$のとき,
\[ \sin \left( x+\frac{\pi}{3} \right)+\cos \left( x-\frac{\pi}{3} \right) \]
の最大値と最小値を求めよ.
(2)空間内の$2$点$(-2,\ 5,\ -1)$,$(2,\ 1,\ 3)$を通る直線の,$x \geqq 0$,$y \geqq 0$,$z \geqq 0$を同時に満たす部分の長さを求めよ.
(3)$\mathrm{TSUDAJUKU}$という単語に使われている$9$文字から$4$文字を選び順列を作る.$\mathrm{U}$という文字がちょうど$2$文字含まれる順列は何通りあるか.
立教大学 私立 立教大学 2016年 第1問
次の空欄$[ア]$~$[コ]$に当てはまる数または式を記入せよ.

(1)$x,\ y$を実数とするとき,座標平面上の点$\mathrm{P}(3 \sin x+5 \sin y,\ 3 \cos x+5 \cos y)$と原点との距離の最小値は$[ア]$であり,最大値は$[イ]$である.
(2)$2016x+401y=1$を満たす整数$x,\ y$で$0<x<401$となるのは,$x=[ウ]$,$y=[エ]$のときである.
(3)$0 \leqq x \leqq 1$のとき,関数$f(x)=\sqrt{x}+2 \sqrt{1-x}$は,$x=[オ]$において最大値$[カ]$をとる.
(4)$\mathrm{O}$を原点とする座標空間内の$2$点$\mathrm{A}(4,\ -1,\ 3)$,$\mathrm{B}(2,\ 1,\ 1)$を通る直線と$xy$平面の交点を$\mathrm{C}$とするとき,$\mathrm{C}$の座標は$[キ]$である.また,直線$\mathrm{AB}$と直線$\mathrm{OC}$のなす角を$\displaystyle \theta \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$とすると,$\cos \theta=[ク]$である.
(5)袋の中に赤玉と白玉が合わせて$8$個入っている.この袋の中から$2$個の玉を同時に取り出すとき,取り出した玉が両方とも白である確率が$\displaystyle \frac{5}{14}$である.このとき,袋の中の白玉は$[ケ]$個である.また,取り出した玉を元に戻し,この袋からあらたに$2$個の玉を同時に取り出すとき,赤玉と白玉が$1$個ずつである確率は$[コ]$である.
津田塾大学 私立 津田塾大学 2016年 第3問
空間内の異なる$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$は同一平面上にないとし,$\mathrm{OA} \perp \mathrm{AB}$,$\mathrm{OA} \perp \mathrm{AC}$,$\mathrm{OB} \perp \mathrm{BC}$とする.また,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とする.

(1)$|\overrightarrow{a}|^2=\overrightarrow{a} \cdot \overrightarrow{b}$,$|\overrightarrow{a}|^2=\overrightarrow{a} \cdot \overrightarrow{c}$,$|\overrightarrow{b}|^2=\overrightarrow{b} \cdot \overrightarrow{c}$であることを示せ.
(2)$\mathrm{A}$から直線$\mathrm{OB}$へ下ろした垂線を$\mathrm{AB}^\prime$,$\mathrm{A}$から直線$\mathrm{OC}$へ下ろした垂線を$\mathrm{AC}^\prime$とし,$\overrightarrow{\mathrm{OB}^\prime}=k \overrightarrow{b}$,$\overrightarrow{\mathrm{OC}^\prime}=l \overrightarrow{c}$とする.$|\overrightarrow{a}|^2=k|\overrightarrow{b}|^2=l|\overrightarrow{c}|^2$であることを示せ.
(3)$\angle \mathrm{B}^\prime \mathrm{AC}^\prime=\theta$とするとき,$\cos \theta$を$k,\ l$を用いて表せ.
津田塾大学 私立 津田塾大学 2016年 第4問
\begin{mawarikomi}{68mm}{
(図は省略)
}
座標平面の$x$軸上に直線$\ell$がある.点$\mathrm{O}^\prime$を中心とする半径$1$の円$C$が直線$\ell$に接しながら$x$軸の負の方向から正の方向へ,すべらずに転がっている.円$C$は$\mathrm{O}^\prime$のまわりに毎秒$1$ラジアンの割合で回転しているとする.

ある時刻に点$\mathrm{O}^\prime$が点$(0,\ 1)$に達し,同時に直線$\ell$が座標平面の原点$\mathrm{O}$を中心として毎秒$1$ラジアンの割合で正の向きに回転を始めた.その時刻に原点にある円$C$上の点を$\mathrm{P}$とする.円$C$はその後も$\ell$に接しながら同じように転がり続けるとする.

\end{mawarikomi}

(1)$\ell$が動き始めてから$t$秒後$\displaystyle \left( 0 \leqq t \leqq \frac{\pi}{2} \right)$における円$C$と直線$\ell$の接点$\mathrm{Q}$の座標を求めよ.
(2)$\ell$が動き始めてから$t$秒後$\displaystyle \left( 0 \leqq t \leqq \frac{\pi}{2} \right)$における点$\mathrm{P}$の座標を求めよ.
(3)$\ell$が動き始めてから$\displaystyle \frac{\pi}{2}$秒後までに点$\mathrm{P}$が描く曲線の長さを求めよ.
津田塾大学 私立 津田塾大学 2016年 第3問
$a$を正の定数とし,放物線$C:y=ax^2$上の点$\mathrm{P}(t,\ at^2)$における接線を$\ell_1$とする.ただし,$t>0$である.

(1)$\ell_1$と$x$軸との交点を通り$\ell_1$と直交する直線を$\ell_2$とする.$\ell_2$は$\mathrm{P}$によらない定点を通ることを示せ.
(2)$x$軸に関して$\ell_1$と対称な直線を$\ell_3$とする.$\ell_3$と$C$の$2$つの交点のうち$x$座標が大きい方を$\mathrm{Q}$,$\mathrm{Q}$から$x$軸に下ろした垂線の足を$\mathrm{R}$とするとき,$C$と直線$\mathrm{QR}$と$x$軸とで囲まれた図形の面積を求めよ.
京都薬科大学 私立 京都薬科大学 2016年 第2問
次の$[ ]$にあてはまる数または式を記入せよ.

$3$次関数$y=f(x)=x^2(x-3)$で与えられる曲線を$C$とする.

(1)関数$y=f(x)$は,$x=[ア]$のとき極大値$[イ]$をとる.また,$x=[ウ]$のとき極小値$[エ]$をとる.
(2)点$(1,\ -2)$における曲線$C$の接線$\ell$の方程式は$y=[オ]$である.
(3)$(1)$の$[ア]$から$[エ]$で表される$2$点$([ア],\ [イ])$,$([ウ],\ [エ])$が$2$次関数$y=x^2+px+q$で与えられる放物線$C^\prime$上にあるとき,$p=[カ]$,$q=[キ]$である.
(4)$(2)$で求めた接線$\ell$と$(3)$で求めた放物線$C^\prime$で囲まれた部分の面積は$[ク]$である.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。