タグ「直線」の検索結果

134ページ目:全2462問中1331問~1340問を表示)
千葉工業大学 私立 千葉工業大学 2013年 第3問
次の各問に答えよ.

(1)数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$が$\displaystyle a_1=\frac{1}{2}$,$\displaystyle a_{n+1}=\frac{3a_n}{2n \cdot a_n+3} (n=1,\ 2,\ 3,\ \cdots)$で定められている.$\displaystyle b_n=\frac{1}{a_n} (n=1,\ 2,\ 3,\ \cdots)$とおくと,$b_1=[ア]$,$\displaystyle b_{n+1}-b_n=\frac{[イ]}{[ウ]}n$が成り立つ.$\displaystyle a_{10}=\frac{[エ]}{[オカ]}$であり,$\displaystyle a_n<\frac{1}{50}$をみたす最小の$n$は$[キク]$である.
(2)平行四辺形$\mathrm{OABC}$において,辺$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{D}$とし,線分$\mathrm{CD}$を$3:4$に内分する点を$\mathrm{E}$とするとき,
\[ \overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{OA}}+\frac{[ケ]}{[コ]} \overrightarrow{\mathrm{OC}},\quad \overrightarrow{\mathrm{OE}}=\frac{[サ]}{[シ]} \overrightarrow{\mathrm{OA}}+\frac{[ス]}{[セ]} \overrightarrow{\mathrm{OC}} \]
である.直線$\mathrm{OE}$と辺$\mathrm{BC}$との交点を$\mathrm{F}$とするとき,
\[ \overrightarrow{\mathrm{OF}}=\frac{[ソ]}{[タ]} \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OC}} \]
であり,三角形$\mathrm{CEF}$の面積は平行四辺形$\mathrm{OABC}$の面積の$\displaystyle \frac{[チ]}{[ツテ]}$倍である.
千葉工業大学 私立 千葉工業大学 2013年 第4問
$\mathrm{O}$を原点とする$xy$平面上に,放物線$\displaystyle C:y=\frac{1}{4}x^2$がある.点$\mathrm{A}(2,\ 8)$を通る直線$\ell:y=t(x-2)+8$(ただし,$t$は定数)と$C$との$2$つの交点を結ぶ線分の中点を$\mathrm{M}(X,\ Y)$とするとき,次の問いに答えよ.

(1)$C$と$\ell$との$2$つの交点の$x$座標を$\alpha,\ \beta$とすると,$\alpha+\beta=[ア] t$である.$X,\ Y$を$t$を用いて表すと,$X=[イ] t$,$Y=[ウ] t^2-[エ] t+[オ]$である.
(2)$\mathrm{M}$が直線$\mathrm{OA}$上の点であるような$t$の値は小さい方から順に$[カ]$,$[キ]$である.
(3)$t$が$[カ]$から$[キ]$まで変化するときの$\mathrm{M}$の軌跡は,放物線
\[ D:y=\frac{[ク]}{[ケ]}x^2-x+[コ] \]
の$[サ] \leqq x \leqq [シ]$の部分である.
(4)$[カ] \leqq t \leqq [キ]$において,直線$\mathrm{OM}$が$D$に接するとき,$X=[ス]$である.また,$t$が$[カ]$から$[キ]$まで変化するとき,線分$\mathrm{OM}$が通過する部分の面積は$\displaystyle \frac{[セソ]}{[タ]}$である.
広島国際学院大学 私立 広島国際学院大学 2013年 第5問
図のような円と交わる直線がある.$\sqrt{\phantom{A}}$は開平しなくてよい.

(1)直線と円の式を求めなさい.
(2)$(1)$で求めた直線と円の交点を求めなさい.
(図は省略)
日本医科大学 私立 日本医科大学 2013年 第3問
次の各問いに答えよ.

(1)$x \geqq 1,\ k=0,\ 1,\ 2,\ \cdots$として
\[ I_k(x)=\int \frac{(\log x)^k}{x^2} \, dx \]
とおくとき,$I_0(x)$を求め,$I_{k+1}(x)$を$I_k(x)$を用いて表せ.また$I_4(x)$を求めよ.

(2)$x>0$で不等式$\displaystyle \log x \leqq \frac{3}{e}x^{\frac{1}{3}}$が成り立つことを証明せよ.

(3)関数$\displaystyle f(x)=\frac{(\log x)^2}{x}$に関する以下の各問いに答えよ.

(i) $y=f(x) (x \geqq 1)$の極値,極限$\displaystyle \lim_{x \to +\infty} f(x)$を調べ,増減表を作り,グラフの概形を描け.
(ii) $n>1$として,$y=f(x)$と$2$直線$x=n$,$x=n^2$および$x$軸で囲まれる部分$D_n$の面積$S_n$を求めよ.
(iii) $D_n$を$x$軸のまわりに回転して得られる立体の体積$V_n$を求めよ.

\mon[$\tokeishi$] 極限$\displaystyle \lim_{n \to \infty} \frac{nV_n}{(\log n)S_n}$の値を求めよ.
東京電機大学 私立 東京電機大学 2013年 第3問
$t$を正の実数とする.座標平面上で点$\mathrm{A}(1,\ 1)$を中心とし点$\mathrm{B}(1,\ 0)$を通る円と,直線$y=tx$との$2$つの交点を$\mathrm{P}$,$\mathrm{Q}$とするとき,次の問に答えよ.

(1)点$\mathrm{A}$と直線$y=tx$との距離を$t$を用いて表せ.
(2)線分$\mathrm{PQ}$の長さを$t$を用いて表せ.
(3)$\triangle \mathrm{BPQ}$の面積$S$を$t$を用いて表せ.
(4)$(3)$の面積$S$が最大になるときの$t$の値を求めよ.
北里大学 私立 北里大学 2013年 第1問
$2$つの関数$f(x)=x^3-6x^2+9x+1$と$g(x)=|-x^2+6x-3|-2$がある.

(1)関数$f(x)$は,極大値$[ア]$,極小値$[イ]$をとる.
(2)関数$y=g(x)$のグラフと直線$x+y=k$が異なる$4$個の共有点をもつ.このとき,実数$k$のとり得る値の範囲は,$[ウ]<k<[エ]$である.
(3)方程式$f(x)=g(x)$の解のうち,最小のものは$x=[オ]$であり,最大のものは$x=[カ]$である.
北里大学 私立 北里大学 2013年 第2問
$a,\ b$を$a<b$を満たす実数とし,$f(x)=x^2+3$とおく.$2$次関数$y=f(x)$のグラフ上の点$\mathrm{P}(a,\ f(a))$における接線を$\ell$,点$\mathrm{Q}(b,\ f(b))$における接線を$m$とするとき,直線$\ell$と$m$は原点で交わっているものとする.

(1)点$\mathrm{P}$で直線$\ell$と接し,点$\mathrm{Q}$で直線$m$と接する円の方程式は
\[ x^2+(y-[キ])^2=[ク] \]
である.
(2)点$\mathrm{P}$で直線$\ell$と垂直に交わる直線と点$\mathrm{Q}$で直線$m$と垂直に交わる直線の交点を$\mathrm{R}$とする.このとき,線分$\mathrm{PR}$と線分$\mathrm{QR}$および放物線$y=f(x)$で囲まれた図形の面積は$[ケ]$である.
北里大学 私立 北里大学 2013年 第3問
$1$辺の長さが$1$の正四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$を$1:2$に内分する点を$\mathrm{D}$,辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{E}$,辺$\mathrm{AB}$を$3:1$に内分する点を$\mathrm{F}$とし,三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とする.また,辺$\mathrm{AO}$の点$\mathrm{O}$を越える延長上に$3 \overrightarrow{\mathrm{AO}}=\overrightarrow{\mathrm{AH}}$となるように点$\mathrm{H}$をとり,直線$\mathrm{HF}$と平面$\mathrm{DEG}$の交点を$\mathrm{L}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.

(1)$\overrightarrow{\mathrm{DE}}$と$\overrightarrow{\mathrm{DG}}$の内積は$[コ]$である.
(2)$\overrightarrow{\mathrm{HF}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表すと,$\overrightarrow{\mathrm{HF}}=[サ] \overrightarrow{a}+[シ] \overrightarrow{b}$と表される.
(3)$\overrightarrow{\mathrm{LF}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表すと,$\overrightarrow{\mathrm{LF}}=[ス] \overrightarrow{a}+[セ] \overrightarrow{b}$と表される.
北里大学 私立 北里大学 2013年 第2問
次の文中の$[ア]$~$[ホ]$にあてはまる最も適切な数を答えなさい.

放物線$y=-x^2+1$を$C_1$,また$y=(x-t)^2+kt+1$を$C_2$とする.ここで$k>0$とし,$t$は任意の実数値をとるものとする.$t$の値が変化するに従い,$C_2$の頂点の軌跡はある直線になる.この直線を$L$とする.

(1)$k=1$の場合を考える.このとき,直線$L$の方程式は,$y=[ア]x+[イ]$である.また$C_1$および$L$によって囲まれた部分の面積は$\displaystyle \frac{[ウ]}{[エ]}$である.
(2)$\displaystyle k=\frac{1}{2}$の場合を考える.$C_1$と$C_2$がただ$1$つの点で接する場合,接点の座標は
\[ (x,\ y)=([オ],\ [カ]) \]
および
\[ (x,\ y)=\left( \frac{[キ]}{[ク]},\ \frac{[ケ]}{[コ]} \right) \]
である.
$C_1$と$C_2$が$2$つの共有点をもつのは,$[サ]<t<[シ]$のときである.このとき,それらの$x$座標を$\alpha,\ \beta (\alpha<\beta)$とすれば,
\[ \alpha+\beta=[ス]t+[セ],\quad \alpha\beta=\frac{[ソ]}{[タ]}t^2+\frac{[チ]}{[ツ]}t+[テ] \]
である.また,$C_1$と$C_2$によって囲まれた部分の面積$S(t)$は,
\[ S(t)=\frac{1}{[ト]} ([ナ]t^2+[ニ]t+[ヌ])^p,\quad \text{ただし} p=\frac{[ネ]}{[ノ]} \]
である.この面積は$\displaystyle t=\frac{[ハ]}{[ヒ]}$のとき最大値$\displaystyle \frac{[フ]}{[ヘ][ホ]}$をとる.
北里大学 私立 北里大学 2013年 第3問
次の文中の$[ア]$~$[ホ]$にあてはまる最も適切な数を答えなさい.

点$\mathrm{A}$の座標を$(4,\ 0)$,点$\mathrm{B}$の座標を$(0,\ 3)$とし,点$\mathrm{A}$,点$\mathrm{B}$を通る直線$L$と点$\mathrm{A}$で接する半径$r$の円を考える.このような円は,直線$L$より上の領域と下の領域にそれぞれ存在する.直線$L$より上の領域に存在する円を$C_1$,下の領域に存在する円を$C_2$とする.また,点$\mathrm{B}$を通る円$C_1$へのもう$1$本の接線が円と接する点を$\mathrm{P}_1$,同じく,点$\mathrm{B}$を通る円$C_2$へのもう$1$本の接線が円と接する点を$\mathrm{P}_2$とする.
(図は省略)
(1)円の半径$r$が線分$\mathrm{AB}$の長さ$R$と等しいとする.
円$C_1$の中心の座標は$([ア],\ [イ])$,円$C_2$の中心の座標は$([ウ],\ [エ])$である.
また,点$\mathrm{P}_1$の座標は$([オ],\ [カ])$,点$\mathrm{P}_2$の座標は$([キ],\ [ク])$である.
(2)円の半径$r$が線分$\mathrm{AB}$の長さ$R$の$2$倍であるとする.
円$C_1$の中心の座標は$([ケ][コ],\ [サ])$,円$C_2$の中心の座標は$([シ],\ [ス])$である.
点$\mathrm{B}$と円$C_1$の中心を通る直線は,線分$\mathrm{AP}_1$を垂直二等分する.その交点を$\mathrm{Q}_1$とする.同様に,点$\mathrm{B}$と円$C_2$の中心を通る直線は,線分$\mathrm{AP}_2$を垂直二等分する.その交点を$\mathrm{Q}_2$とする.
点$\mathrm{B}$と円$C_1$の中心を通る直線の式は$\displaystyle y=\frac{[セ]}{[ソ]}x+[タ]$であり,点$\mathrm{A}$と点$\mathrm{P}_1$を通る直線の式は,$\displaystyle y=-\frac{[ソ]}{[セ]}x+[チ]$と表すことができる.
同様に,点$\mathrm{B}$と円$C_2$の中心を通る直線の式は$\displaystyle y=\frac{[ツ][テ]}{[ト]}x+[タ]$であり,点$\mathrm{A}$と点$\mathrm{P}_2$を通る直線の式は,$\displaystyle y=-\frac{[ト]}{[ツ][テ]}x+\frac{[ナ]}{[ニ][ヌ]}$と表すことができる.
点$\mathrm{Q}_2$の座標は$\displaystyle \left( \frac{[ネ]}{[ノ]},\ \frac{[ハ]}{[ノ]} \right)$,点$\mathrm{P}_2$の座標は$\displaystyle \left( \frac{[ヒ][フ]}{[ヘ]},\ \frac{[ホ]}{[ヘ]} \right)$となる.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。