タグ「直交」の検索結果

1ページ目:全180問中1問~10問を表示)
東京海洋大学 国立 東京海洋大学 2016年 第3問
座標平面上に放物線$C:y=x^2$がある.点$\mathrm{P}(t,\ t^2)$(ただし,$t>0$)における$C$の接線を$\ell$とし,$\ell$が$x$軸,$y$軸と交わる点をそれぞれ$\mathrm{M}$,$\mathrm{N}$とする.$\mathrm{M}$を通り$\ell$と直交する直線が,$y$軸,直線$x=t$と交わる点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とする.

(1)$\angle \mathrm{QPR}$は$\ell$により二等分されることを示せ.
(2)$\triangle \mathrm{PQR}$が正三角形になるような$t$の値を求めよ.
(3)四角形$\mathrm{PQNR}$の面積を$S_1$とし,線分$\mathrm{PQ}$,$y$軸および$C$で囲まれる図形の面積を$S_2$とする.$(2)$のとき,$\displaystyle \frac{S_2}{S_1}$の値を求めよ.
神戸大学 国立 神戸大学 2016年 第5問
極方程式で表された$xy$平面上の曲線$r=1+\cos \theta (0 \leqq \theta \leqq 2\pi)$を$C$とする.以下の問に答えよ.

(1)曲線$C$上の点を直交座標$(x,\ y)$で表したとき,$\displaystyle \frac{dx}{d\theta}=0$となる点,および$\displaystyle \frac{dy}{d\theta}=0$となる点の直交座標を求めよ.
(2)$\displaystyle \lim_{\theta \to \pi} \frac{dy}{dx}$を求めよ.
(3)曲線$C$の概形を$xy$平面上にかけ.
(4)曲線$C$の長さを求めよ.
横浜国立大学 国立 横浜国立大学 2016年 第5問
$xy$平面上に楕円$\displaystyle C:\frac{x^2}{4}+y^2=1$がある.次の問いに答えよ.

(1)点$\mathrm{P}(a,\ b)$を通る$C$の接線が$2$本あり,それらが直交するとき,$a,\ b$がみたす条件を求めよ.
(2)$C$に外接する長方形のうち,$x$座標が$1$で$y$座標が正である頂点をもつものの面積を求めよ.
信州大学 国立 信州大学 2016年 第4問
半直線$\ell:y=x (x \geqq 0)$,放物線$\displaystyle C:y=\frac{\sqrt{2}}{4}x^2+\frac{\sqrt{2}}{2}$を考える.以下の問いに答えよ.

(1)放物線$C$と半直線$\ell$が接する点の座標を求めよ.
(2)$t \geqq 0$とする.原点からの距離が$t$である$\ell$上の点を$\mathrm{A}(t)$とするとき,$\mathrm{A}(t)$を通り$\ell$に直交する直線と,放物線$C$の共有点の座標を$t$を用いて表せ.
(3)放物線$C$と半直線$\ell$および$y$軸とで囲まれた図形を,半直線$\ell$のまわりに$1$回転してできる回転体の体積を求めよ.
信州大学 国立 信州大学 2016年 第4問
半直線$\ell:y=x (x \geqq 0)$,放物線$\displaystyle C:y=\frac{\sqrt{2}}{4}x^2+\frac{\sqrt{2}}{2}$を考える.以下の問いに答えよ.

(1)放物線$C$と半直線$\ell$が接する点の座標を求めよ.
(2)$t \geqq 0$とする.原点からの距離が$t$である$\ell$上の点を$\mathrm{A}(t)$とするとき,$\mathrm{A}(t)$を通り$\ell$に直交する直線と,放物線$C$の共有点の座標を$t$を用いて表せ.
(3)放物線$C$と半直線$\ell$および$y$軸とで囲まれた図形を,半直線$\ell$のまわりに$1$回転してできる回転体の体積を求めよ.
香川大学 国立 香川大学 2016年 第2問
\begin{mawarikomi}{50mm}{
(図は省略)
}
図のような,一辺の長さが$1$の立方体$\mathrm{OABC}$-$\mathrm{DEFG}$を考える.対角線$\mathrm{OF}$上に点$\mathrm{P}$をとり,$\mathrm{OP}=x$とする.このとき,次の問に答えよ.

(1)点$\mathrm{P}$を通り対角線$\mathrm{OF}$と直交する平面で,立方体$\mathrm{OABC}$-$\mathrm{DEFG}$を切る.その切り口の多角形の面積$S(x)$を$x$を用いて表せ.
(2)関数$y=S(x)$のグラフをかけ.

(3)定積分$\displaystyle \int_0^{\frac{2 \sqrt{3}}{3}} S(x) \, dx$を求めよ.

\end{mawarikomi}
信州大学 国立 信州大学 2016年 第2問
半直線$\ell:y=x (x \geqq 0)$,放物線$\displaystyle C:y=\frac{\sqrt{2}}{4}x^2+\frac{\sqrt{2}}{2}$を考える.以下の問いに答えよ.

(1)放物線$C$と半直線$\ell$が接する点の座標を求めよ.
(2)$t \geqq 0$とする.原点からの距離が$t$である$\ell$上の点を$\mathrm{A}(t)$とするとき,$\mathrm{A}(t)$を通り$\ell$に直交する直線と,放物線$C$の共有点の座標を$t$を用いて表せ.
(3)放物線$C$と半直線$\ell$および$y$軸とで囲まれた図形を,半直線$\ell$のまわりに$1$回転してできる回転体の体積を求めよ.
福島大学 国立 福島大学 2016年 第2問
関数$y=x^3-x$のグラフを$C$とする.

(1)$C$上の点$(t,\ t^3-t)$における$C$の接線の方程式を求めなさい.
(2)$C$上の$2$点$(t,\ t^3-t)$および$(s,\ s^3-s)$における$C$の接線が一致するのは$t=s$のときに限ることを示しなさい.
(3)$C$上にない点$\mathrm{A}(a,\ b)$から$C$へ引ける接線の数がちょうど$2$本となるとき,$a,\ b$がみたす条件を求めなさい.
(4)$(3)$の$2$本の接線が直交するときの$a,\ b$の値を求めなさい.
福島大学 国立 福島大学 2016年 第2問
関数$y=x^3-x$のグラフを$C$とする.

(1)$C$上の点$(t,\ t^3-t)$における$C$の接線の方程式を求めなさい.
(2)$C$上の$2$点$(t,\ t^3-t)$および$(s,\ s^3-s)$における$C$の接線が一致するのは$t=s$のときに限ることを示しなさい.
(3)$C$上にない点$\mathrm{A}(a,\ b)$から$C$へ引ける接線の数がちょうど$2$本となるとき,$a,\ b$がみたす条件を求めなさい.
(4)$(3)$の$2$本の接線が直交するときの$a,\ b$の値を求めなさい.
熊本大学 国立 熊本大学 2016年 第1問
$\triangle \mathrm{ABC}$と,$\mathrm{A}$を通り$\mathrm{BC}$に平行な直線$\ell$を考える.$k$を正の数とし,直線$\ell$上に点$\mathrm{P}$を$\overrightarrow{\mathrm{AP}}=k \overrightarrow{\mathrm{BC}}$となるようにとる.また直線$\ell$上に点$\mathrm{Q}$を,線分$\mathrm{PB}$と線分$\mathrm{QC}$が$1$点で交わるようにとる.その交点を$\mathrm{R}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおき,また$m$を$\overrightarrow{\mathrm{AQ}}=m \overrightarrow{\mathrm{AP}}$により定める.以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{AR}}$を$\overrightarrow{b},\ \overrightarrow{c},\ k,\ m$を用いて表せ.
(2)$|\overrightarrow{b|}=1$,$|\overrightarrow{c|}=2$,$\displaystyle \cos \angle \mathrm{BAC}=\frac{3}{4}$,$m=-1$とする.$\overrightarrow{\mathrm{BR}}$と$\overrightarrow{\mathrm{CR}}$が直交するとき,$k$の値を求めよ.
スポンサーリンク

「直交」とは・・・

 まだこのタグの説明は執筆されていません。