タグ「無作為」の検索結果

4ページ目:全105問中31問~40問を表示)
早稲田大学 私立 早稲田大学 2015年 第4問
$N$を$3$以上の自然数とする.$1$から$N$までの数字が書かれた$N$枚のカードを用意し,$\mathrm{A}$と$\mathrm{B}$の二人で次のようなゲームを行う.まず$\mathrm{A}$は,$1$から$N$までの数のうちから一つ選びそれを$K$とし,その数は$\mathrm{B}$に知らせずにおく.その後,以下の試行を何度も繰り返す.

$\mathrm{B}$は$N$枚のカードから無作為に一枚引いて$\mathrm{A}$にその数を伝え,$\mathrm{A}$は引かれた数字が$K$より大きければ「上」,$K$以下であれば「以下」と$\mathrm{B}$に答え,$\mathrm{B}$はその答から$K$の範囲を絞り込む.引いたカードは元へ戻す.
このとき,$n$回以下の試行で$\mathrm{B}$が$K$を確定できる確率を$P_N(n)$で表す.次の問に答えよ.

(1)$K=1$のとき,$P_3(1)$,$P_3(2)$,$P_3(3)$を求めよ.
(2)$K=2$のとき,$P_3(1)$,$P_3(2)$,$P_3(3)$を求めよ.
(3)$K=1,\ 2,\ \cdots,\ N$について$P_N(n)$を求めよ.
(4)自然数$c$に対して,極限値$\displaystyle \lim_{N \to \infty} P_N(cN)$を求めよ.
上智大学 私立 上智大学 2015年 第3問
次の問いに答えよ.

(1)$\displaystyle x=\frac{3+\sqrt{5}}{2}$とする.
\[ x^2+[ア]x+[イ]=0 \]
である.また,$y=x^2$とするとき,
\[ y^2+[ウ]y+[エ]=0 \]
である.$x^3=ax+b$となる整数$a,\ b$は
\[ a=[オ],\quad b=[カ] \]
である.
(2)$\theta$を実数とするとき,

$\cos 3\theta=[キ] \cos^3 \theta+[ク] \cos \theta,$
$\cos 5\theta=[ケ] \cos^5 \theta+[コ] \cos^3 \theta+[サ] \cos \theta$

である.
(3)$a>1$とする.数列

$a,\ 1 \quad \biggl| \quad a^2,\ a,\ 1 \quad \biggl| \quad a^3,\ a^2,\ a,\ 1 \quad \biggl| \quad \cdots$
第$1$群 \qquad 第$2$群 \qquad\qquad 第$3$群

において,例えば,第$3$群第$1$項は$a^3$であり,これは最初から数えて第$6$項である.$a^{12}$が初めて現れるのは最初から数えて第$[シ]$項である.また最初から数えて第$645$項は第$[ス]$群$[セ]$項である.
(4)次の$\mathrm{a}$,$\mathrm{b}$,$\mathrm{c}$のように,$2$つの試行を連続して行った結果それぞれ事象$A$と事象$B$が起こった.$2$つの試行が独立なものの組み合わせとして最もふさわしいものを一つ選べ.

\mon[$\mathrm{a.}$] 赤い玉が$4$個,白い玉が$4$個入った袋がある.

$A:$玉を$1$個取り出したところ白だった.
$B:$最初の試行で取り出した玉を戻した後,$1$個取り出したところ白だった.

\mon[$\mathrm{b.}$] $30$人のクラスがある.

$A:$無作為に選んだ$\mathrm{X}$さんの誕生日が$1$月$1$日である.
$B:$その次に無作為に選んだ$\mathrm{Y}$さんの誕生日が$1$月$1$日である.

\mon[$\mathrm{c.}$] $5$つの扉があり,それぞれの後ろに猫が一匹いる.猫は黒猫が$3$匹,白猫が$2$匹であり,その場から動かないものとする.

$A:1$つ目の扉を開けたところ,黒猫がいた.
$B:1$つ目の扉を閉じた後,別の扉を開けたところ,白猫がいた.


\begin{screen}
選択肢:

\begin{tabular}{lll}
$1.$ \ $\mathrm{a}$ & $2.$ \ $\mathrm{b}$ & $3.$ \ $\mathrm{c}$ \\
$4.$ \ $\mathrm{ab}$ & $5.$ \ $\mathrm{ac}$ & $6.$ \ $\mathrm{bc}$ \\
$7.$ \ $\mathrm{abc}$ \phantom{AAAAA} & $8.$ \ なし \phantom{AAAAA} & \phantom{AAAAA} \\
\end{tabular}

\end{screen}
北里大学 私立 北里大学 2015年 第1問
次の$[ ]$にあてはまる答を記せ.

(1)$k$を定数とするとき,方程式$\sqrt{4x-3}=x+k$の実数解の個数が$2$個となる$k$の値の範囲は$[ア]$,実数解の個数が$1$個となる$k$の値の範囲は$[イ]$である.また,曲線$y=\sqrt{4x-3}$と直線$y=x$で囲まれた部分を,$x$軸の周りに$1$回転させてできる立体の体積は$[ウ]$である.
(2)曲線$y=kx^3-1$と曲線$y=\log x$が共有点をもち,その点において共通の接線をもつとするとき,定数$k$の値は$[エ]$,共通の接線の方程式は$y=[オ]$である.
(3)数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とするとき,$\{a_n\}$は
\[ a_1=1,\quad a_{n+1}=S_n+n^2+1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たす.このとき,$a_4=[カ]$であり,$\{a_n\}$の一般項は$a_n=[キ]$である.また,$S_n=[ク]$である.
(4)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=3$,$\mathrm{AC}=4$,$\displaystyle \angle \mathrm{A}=\frac{\pi}{3}$である.$\triangle \mathrm{ABC}$の外心を$\mathrm{O}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおく.

(i) $\triangle \mathrm{ABC}$の外接円の半径は$[ケ]$である.
(ii) $\overrightarrow{\mathrm{AO}}$を$\overrightarrow{b}$と$\overrightarrow{c}$を用いて表すと$\overrightarrow{\mathrm{AO}}=[コ] \overrightarrow{b}+[サ] \overrightarrow{c}$である.
(iii) 直線$\mathrm{BO}$と辺$\mathrm{AC}$の交点を$\mathrm{P}$とするとき,$\mathrm{AP}:\mathrm{PC}$は$[シ]$である.

(5)$\mathrm{X}$君と$\mathrm{Y}$さんは,毎日正午に次の規則にしたがって食事をとる.

(i) 食堂$\mathrm{A}$,食堂$\mathrm{B}$,食堂$\mathrm{C}$のいずれかで食事をとる.
(ii) 食堂は前日とは異なる$2$つの食堂のうちの$1$つを無作為に選ぶ.
(iii) $2$人が同じ食堂を選んだ日は,必ず一緒に食事をとる.

$1$日目,$2$人は別々の食堂で食事をとったとする.このとき,$3$日目に初めて$2$人が一緒に食事をとる確率は$[ス]$である.また,$2$人が一緒に食事をとる$2$回目の日が$7$日目となる確率は$[セ]$である.
岩手大学 国立 岩手大学 2014年 第1問
次の問いに答えよ.

(1)次の不等式を解け.ただし,$a$は定数で,$a>0$,$a \neq 1$を満たすものとする.
\[ a^{2x}-a^x-6<0 \]
(2)三角形$\mathrm{ABC}$において,$\mathrm{AB}=2$,$\mathrm{AC}=5$,$\angle \mathrm{A}={60}^\circ$とする.$\angle \mathrm{A}$の二等分線と辺$\mathrm{BC}$との交点を$\mathrm{P}$とするとき,$\mathrm{BP}$の長さを求めよ.
(3)赤玉$4$個と白玉$5$個が入った袋がある.無作為に玉を$2$個同時に取り出したとき,赤玉の出る個数の期待値を求めよ.
岩手大学 国立 岩手大学 2014年 第1問
次の問いに答えよ.

(1)次の不等式を解け.ただし,$a$は定数で,$a>0$,$a \neq 1$を満たすものとする.
\[ a^{2x}-a^x-6<0 \]
(2)三角形$\mathrm{ABC}$において,$\mathrm{AB}=2$,$\mathrm{AC}=5$,$\angle \mathrm{A}={60}^\circ$とする.$\angle \mathrm{A}$の二等分線と辺$\mathrm{BC}$との交点を$\mathrm{P}$とするとき,$\mathrm{BP}$の長さを求めよ.
(3)赤玉$4$個と白玉$5$個が入った袋がある.無作為に玉を$2$個同時に取り出したとき,赤玉の出る個数の期待値を求めよ.
千葉大学 国立 千葉大学 2014年 第4問
$A$,$B$ふたりは,それぞれ$1$から$4$までの番号のついた$4$枚のカードを持ち,それを用いて何回かの勝負から成るつぎのゲームをする.
\begin{itemize}
初めに$A,\ B$はそれぞれ$4$枚のカードを自分の袋に入れ,よくかきまぜる.
$A,\ B$はそれぞれ自分の袋から無作為に$1$枚ずつカードを取り出し,そのカードを比較して$1$回の勝負を行う.すなわち,大きい番号のついたカードを取り出したほうがこの回は勝ちとし,番号が等しいときはこの回は引き分けとする.
袋から取り出したカードは袋に戻さないものとする.
$A,\ B$どちらかが$2$回勝てば,カードの取り出しをやめて,$2$回勝ったほうをゲームの勝者とする.$4$枚すべてのカードを取り出してもいずれも$2$回勝たなければゲームは引き分けとする.
\end{itemize}
このとき,以下の問いに答えよ.

(1)$A$が$0$勝$0$敗$4$引き分けしてゲームが引き分けになる確率を求めよ.
(2)$A$が$1$勝$1$敗$2$引き分けしてゲームが引き分けになる確率を求めよ.
(3)$A$がゲームの勝者になる確率を求めよ.
千葉大学 国立 千葉大学 2014年 第1問
袋の中に,赤玉が$3$個,白玉が$7$個が入っている.袋から玉を無作為に$1$つ取り出し,色を確認してから,再び袋に戻すという試行を行う.この試行を$N$回繰り返したときに,赤玉を$A$回(ただし$0 \leqq A \leqq N$)取り出す確率を$p(N,\ A)$とする.このとき,以下の問いに答えよ.

(1)確率$p(N,\ A)$を$N$と$A$を用いて表せ.
(2)$N$が$10$の倍数,すなわち$N=10n$となる自然数$n$があるとする.確率$p(10n,\ 0)$,$p(10n,\ 1)$,$\cdots$,$p(10n,\ 10n)$のうち,一番大きな値は$p(10n,\ 3n)$であることを次の手順により証明せよ.

(i) $0$以上の整数$a$,自然数$b$に対して,$\displaystyle \frac{b!}{a!} \leqq b^{b-a}$を示す.ただし$0!=1$とする.

(ii) $0$以上$10n$以下の整数$m$に対して,$\displaystyle \frac{p(10n,\ m)}{p(10n,\ 3n)} \leqq 1$を示す.
鹿児島大学 国立 鹿児島大学 2014年 第8問
次の各問いに答えよ.

(1)数字$1$が書かれた玉$a$個($a \geqq 1$)と,数字$2$が書かれた玉$1$個がある.これら$a+1$個の玉を母集団として,玉に書かれている数字を変量とする.このとき,この母集団から復元抽出によって大きさ$3$の無作為標本を抽出し,その玉の数字を取り出した順に$X_1$,$X_2$,$X_3$とする.標本平均$\displaystyle \overline{X}=\frac{X_1+X_2+X_3}{3}$の平均$E(\overline{X})$が$\displaystyle \frac{3}{2}$であるとき,$\overline{X}$の確率分布とその分散$V(\overline{X})$を求めよ.ただし,復元抽出とは,母集団の中から標本を抽出するのに,毎回もとに戻してから次のものを$1$個取り出す抽出法である.
(2)ある企業の入社試験は採用枠$300$名のところ$500$名の応募があった.試験の結果は$500$点満点の試験に対し,平均点$245$点,標準偏差$50$点であった.得点の分布が正規分布であるとみなされるとき,合格最低点はおよそ何点であるか.小数点以下を切り上げて答えよ.ただし,確率変数$Z$が標準正規分布に従うとき,$P(Z>0.25)=0.4$,$P(Z>0.5)=0.3$,$P(Z>0.54)=0.2$とする.
三重大学 国立 三重大学 2014年 第3問
$\mathrm{X}$大学では,オープンキャンパスに$40$名の高校生が参加を申し込んだ.この$40$名の高校生のために,黒色$20$本,青色$10$本,赤色$10$本,計$40$本のボールペンを参加の記念として用意した.この$40$名の中の特定の$2$名$\mathrm{A}$,$\mathrm{B}$について,下の問いに答えよ.ただし,オープンキャンパスにはこの$40$名の高校生が参加するとする.また,高校生$1$名に必ず$1$本のボールペンが渡され,渡されるボールペンの色は無作為に決定される.

(1)$\mathrm{A}$,$\mathrm{B}$ともに黒色のボールペンを渡される確率を求めよ.
(2)$\mathrm{A}$,$\mathrm{B}$が同じ色のボールペンを渡される確率を求めよ.
三重大学 国立 三重大学 2014年 第3問
$\mathrm{X}$大学では,オープンキャンパスに$40$名の高校生が参加を申し込んだ.この$40$名の高校生のために,黒色$20$本,青色$10$本,赤色$10$本,計$40$本のボールペンを参加の記念として用意した.この$40$名の中の特定の$2$名$\mathrm{A}$,$\mathrm{B}$について,下の問いに答えよ.ただし,オープンキャンパスにはこの$40$名の高校生が参加するとする.また,高校生$1$名に必ず$1$本のボールペンが渡され,渡されるボールペンの色は無作為に決定される.

(1)$\mathrm{A}$,$\mathrm{B}$ともに黒色のボールペンを渡される確率を求めよ.
(2)$\mathrm{A}$,$\mathrm{B}$が同じ色のボールペンを渡される確率を求めよ.
スポンサーリンク

「無作為」とは・・・

 まだこのタグの説明は執筆されていません。