タグ「漸化式」の検索結果

1ページ目:全503問中1問~10問を表示)
一橋大学 国立 一橋大学 2016年 第2問
$\theta$を実数とし,数列$\{a_n\}$を
\[ a_1=1,\quad a_2=\cos \theta,\quad a_{n+2}=\frac{3}{2}a_{n+1}-a_n \]
により定める.すべての$n$について$a_n=\cos (n-1) \theta$が成り立つとき,$\cos \theta$を求めよ.
東京海洋大学 国立 東京海洋大学 2016年 第1問
数列$\{a_n\},\ \{b_n\}$を以下で定める.


$a_1=2,\quad b_1=1$

$\left\{ \begin{array}{l}
a_{n+1}=2a_n+3b_n \\
b_{n+1}=a_n+2b_n
\end{array} \right. \quad (n=1,\ 2,\ 3,\ \cdots)$



(1)$n=1,\ 2,\ 3,\ \cdots$について,


$a_n+\sqrt{3}b_n={(2+\sqrt{3})}^n$

$a_n-\sqrt{3}b_n={(2-\sqrt{3})}^n$


が成り立つことを示せ.

(2)$\displaystyle \frac{b_n}{a_n}$を$n$を用いて表せ.

(3)数列$\{e_n\}$を
\[ e_n=\frac{\sqrt{3} \, b_n}{a_n}-1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定めるとき,$n \geqq 3$ならば
\[ |e_n|<0.001 \]
であることを示せ.ただし,$\displaystyle 0.071<\frac{2-\sqrt{3}}{2+\sqrt{3}}<0.072$を用いてもよい.
北海道大学 国立 北海道大学 2016年 第4問
次の問いに答えよ.

(1)次の方程式が異なる$3$つの$0$でない実数解をもつことを示せ.
\[ x^3+x^2-2x-1=0 \quad \cdots \quad ① \]
(2)方程式$①$の$3$つの実数解を$s,\ t,\ u$とし,数列$\{a_n\}$を
\[ a_n=\frac{s^{n-1}}{(s-t)(s-u)}+\frac{t^{n-1}}{(t-u)(t-s)}+\frac{u^{n-1}}{(u-s)(u-t)} \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.このとき,
\[ a_{n+3}+a_{n+2}-2a_{n+1}-a_n=0 \quad (n=1,\ 2,\ 3,\ \cdots) \]
が成り立つことを示せ.
(3)$(2)$の$a_n$がすべて整数であることを示せ.
九州大学 国立 九州大学 2016年 第4問
自然数$n$に対して,${10}^n$を$13$で割った余りを$a_n$とおく.$a_n$は$0$から$12$までの整数である.以下の問いに答えよ.

(1)$a_{n+1}$は$10a_n$を$13$で割った余りに等しいことを示せ.
(2)$a_1,\ a_2,\ \cdots,\ a_6$を求めよ.
(3)以下の$3$条件を満たす自然数$N$をすべて求めよ.

(i) $N$を十進法で表示したとき$6$桁となる.
(ii) $N$を十進法で表示して,最初と最後の桁の数字を取り除くと$2016$となる.
(iii) $N$は$13$で割り切れる.
名古屋工業大学 国立 名古屋工業大学 2016年 第2問
数列$\{a_n\}$は
\[ a_1=4,\quad a_{n+1}=\frac{(3n+4)a_n-9n-6}{(n+1)a_n-3n-1} \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たす.

(1)すべての自然数$n$に対し,$a_n>3$であることを示せ.
(2)$\displaystyle b_n=\frac{1}{a_n-3}$とおく.$b_{n+1}$を$b_n$と$n$の式で表せ.
(3)$(2)$で定めた数列$\{b_n\}$に対し$c_n=b_{n+1}-b_n$とおく.数列$\{c_n\}$の一般項を求めよ.
(4)数列$\{a_n\}$の一般項を求めよ.
九州大学 国立 九州大学 2016年 第4問
自然数$n$に対して,${10}^n$を$13$で割った余りを$a_n$とおく.$a_n$は$0$から$12$までの整数である.以下の問いに答えよ.

(1)$a_{n+1}$は$10a_n$を$13$で割った余りに等しいことを示せ.
(2)$a_1,\ a_2,\ \cdots,\ a_6$を求めよ.
(3)以下の$3$条件を満たす自然数$N$をすべて求めよ.

(i) $N$を十進法で表示したとき$6$桁となる.
(ii) $N$を十進法で表示して,最初と最後の桁の数字を取り除くと$2016$となる.
(iii) $N$は$13$で割り切れる.
神戸大学 国立 神戸大学 2016年 第4問
約数,公約数,最大公約数を次のように定める.
\begin{itemize}
$2$つの整数$a,\ b$に対して,$a=bk$をみたす整数$k$が存在するとき,$b$は$a$の約数であるという.
$2$つの整数に共通の約数をそれらの公約数という.
少なくとも一方が$0$でない$2$つの整数の公約数の中で最大のものをそれらの最大公約数という.
\end{itemize}
以下の問に答えよ.

(1)$a,\ b,\ c,\ p$は$0$でない整数で$a=pb+c$をみたしているとする.

(i) $a=18$,$b=30$,$c=-42$,$p=2$のとき,$a$と$b$の公約数の集合$S$,および$b$と$c$の公約数の集合$T$を求めよ.
(ii) $a$と$b$の最大公約数を$M$,$b$と$c$の最大公約数を$N$とする.$M$と$N$は等しいことを示せ.ただし,$a,\ b,\ c,\ p$は$0$でない任意の整数とする.

(2)自然数の列$\{a_n\}$を
\[ a_{n+2}=6a_{n+1}+a_n (n=1,\ 2,\ \cdots),\quad a_1=3,\quad a_2=4 \]
で定める.

(i) $a_{n+1}$と$a_n$の最大公約数を求めよ.
(ii) $a_{n+4}$を$a_{n+2}$と$a_n$を用いて表せ.
(iii) $a_{n+2}$と$a_n$の最大公約数を求めよ.
名古屋大学 国立 名古屋大学 2016年 第4問
次の問に答えよ.ただし$2$次方程式の重解は$2$つと数える.

(1)次の条件$(*)$を満たす整数$a,\ b,\ c,\ d,\ e,\ f$の組をすべて求めよ.
\[ (*) \left\{ \begin{array}{l}
\text{$2$次方程式$x^2+ax+b=0$の$2$つの解が$c,\ d$である.} \\
\text{$2$次方程式$x^2+cx+d=0$の$2$つの解が$e,\ f$である.} \\
\text{$2$次方程式$x^2+ex+f=0$の$2$つの解が$a,\ b$である.}
\end{array} \right. \]
(2)$2$つの数列$\{a_n\},\ \{b_n\}$は,次の条件$(**)$を満たすとする.

\mon[$(**)$] すべての正の整数$n$について,$a_n,\ b_n$は整数であり,$2$次方程式$x^2+a_nx+b_n=0$の$2$つの解が$a_{n+1},\ b_{n+1}$である.

このとき,

(i) 正の整数$m$で,$|b_m|=|b_{m+1|}=|b_{m+2|}=\cdots$となるものが存在することを示せ.
(ii) 条件$(**)$を満たす数列$\{a_n\},\ \{b_n\}$の組をすべて求めよ.
金沢大学 国立 金沢大学 2016年 第1問
数列$\{a_n\}$と$\{b_n\}$は
\[ \left\{ \begin{array}{l}
a_1=b_1=2, \phantom{\displaystyle\frac{[ ]}{[ ]}} \\
\displaystyle a_{n+1}=\frac{\sqrt{2}}{4}a_n-\frac{\sqrt{6}}{4}b_n,\quad b_{n+1}=\frac{\sqrt{6}}{4}a_n+\frac{\sqrt{2}}{4}b_n \quad (n=1,\ 2,\ 3,\ \cdots) \phantom{\displaystyle\frac{[ ]}{[ ]}}
\end{array} \right. \]
を満たすものとする.$a_n$を実部とし$b_n$を虚部とする複素数を$z_n$で表すとき,次の問いに答えよ.

(1)$z_{n+1}=wz_n$を満たす複素数$w$と,その絶対値$|w|$を求めよ.
(2)複素数平面上で,点$z_{n+1}$は点$z_n$をどのように移動した点であるかを答えよ.
(3)数列$\{a_n\}$と$\{b_n\}$の一般項を求めよ.
(4)複素数平面上の$3$点$0,\ z_n,\ z_{n+1}$を頂点とする三角形の周と内部を黒く塗りつぶしてできる図形を$T_n$とする.このとき,複素数平面上で$T_1,\ T_2,\ \cdots,\ T_n,\ \cdots$によって黒く塗りつぶされる領域の面積を求めよ.
埼玉大学 国立 埼玉大学 2016年 第2問
$\displaystyle f(x)=\frac{3^x-1}{3^x+1},\ g(x)=\frac{x^2+4x+1}{2(x^2+x+1)}$とする.次の問いに答えよ.

(1)$g(f(x))=f(2x+1)$が成り立つことを示せ.
(2)数列$\{a_n\}$を
\[ a_1=1,\quad a_{n+1}=2a_n+1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
により定め,数列$\{b_n\}$を
\[ b_1=\frac{1}{2},\quad b_{n+1}=g(b_n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
により定める.

\mon[(ア)] $b_n=f(a_n) (n=1,\ 2,\ 3,\ \cdots)$が成り立つことを数学的帰納法を用いて示せ.
\mon[(イ)] 数列$\{a_n\},\ \{b_n\}$の一般項をそれぞれ求めよ.
\mon[(ウ)] $\displaystyle \lim_{n \to \infty} b_n$を求めよ.
スポンサーリンク

「漸化式」とは・・・

 まだこのタグの説明は執筆されていません。