タグ「水平」の検索結果

1ページ目:全7問中1問~10問を表示)
東京工業大学 国立 東京工業大学 2016年 第3問
水平な平面$\alpha$の上に半径$r_1$の球$S_1$と半径$r_2$の球$S_2$が乗っており,$S_1$と$S_2$は外接している.

(1)$S_1,\ S_2$が$\alpha$と接する点をそれぞれ$\mathrm{P}_1$,$\mathrm{P}_2$とする.線分$\mathrm{P}_1 \mathrm{P}_2$の長さを求めよ.
(2)$\alpha$の上に乗っており,$S_1$と$S_2$の両方に外接している球すべてを考える.それらの球と$\alpha$の接点は,$1$つの円の上または$1$つの直線の上にあることを示せ.
沖縄国際大学 私立 沖縄国際大学 2016年 第3問
以下の各問いに答えなさい.

(1)$\displaystyle \sin ({90}^\circ-\theta)=\frac{1}{3}$のとき,$\sin \theta,\ \cos \theta,\ \tan \theta$の値を,それぞれ求めなさい.ただし,$\theta$は鋭角とする.
(2)下の図において,$\sin \theta,\ \cos \theta,\ \tan \theta$を,それぞれ求めなさい.

(図は省略)

(3)下の図において,海抜$0 \, \mathrm{m}$の地点$\mathrm{A}$から飛行物体$\mathrm{X}$を見上げた角度は${45}^\circ$であった.次にこの飛行物体$\mathrm{X}$に向かって水平に$20 \, \mathrm{m}$近づいた地点$\mathrm{B}$から$\mathrm{X}$を見上げたときの角度は${60}^\circ$であった.このとき,飛行物体$\mathrm{X}$の高度にあたる$\mathrm{XH}$を求めなさい.
(図は省略)
京都教育大学 国立 京都教育大学 2014年 第5問
幅$30 \, \mathrm{cm}$の長方形の金属板を,図$1$の点線で折り曲げて雨どいを作る.図$2$は折り曲げた金属板のどの面にも垂直な平面による断面である.また,$\mathrm{AB}$,$\mathrm{CP}$は水平面に垂直,$\mathrm{AC}$は水平で,$\mathrm{AB}$の長さは$10 \, \mathrm{cm}$であるとする.$\mathrm{CP}$の長さを$x \, \mathrm{cm} (0<x<10)$,雨どいの上記平面による断面積(水が流れることのできる部分の断面積)を$S \, \mathrm{cm}^2$とするとき,次の問に答えよ.ただし,金属板の厚みは無視する.

(1)$S$を$x$で表せ.
(2)$S^2$を考えて,$S$の最大値とそのときの$x$の値を求めよ.
(図は省略)
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
以下の問いに答えなさい.

(1)下図のような口の半径が$10 \, \mathrm{cm}$,高さが$30 \, \mathrm{cm}$の口の開いた逆円すい形の容器を,口が水平になるように置き,水を入れた.水面の面積が$36 \pi \, \mathrm{cm}^2$であるとき,水の体積は$[$1$][$2$][$3$] \pi \, \mathrm{cm}^3$であり,容器の内面で水に接していない部分の面積は,水に接している部分の面積の$\displaystyle \frac{[$4$][$5$]}{[$6$]}$倍である.
(図は省略)
(2)次の数列を考える.
\[ 1,\ \frac{1}{3},\ \frac{1}{3},\ \frac{1}{3},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{27},\ \cdots \]
この数列の第$670$項は$\displaystyle \frac{1}{[$7$][$8$][$9$]}$,初項から第$2182$項までの和は
\[ \frac{\kakkofour{$10$}{$11$}{$12$}{$13$}}{[$14$][$15$][$16$]} \]
である.
(3)次の連立方程式を満たす実数の組$(x,\ y)$をすべて求めなさい.
\[ \left\{ \begin{array}{l}
-9x^2+4x+3y^2=0 \\
3xy-5y=0
\end{array} \right. \]
獨協大学 私立 獨協大学 2013年 第1問
次の設問の空欄を,あてはまる数値や記号,式などで埋めなさい.

(1)塔の高さを測るために,塔から水平に$380 \; \mathrm{m}$離れた地点で塔の先端の仰角を測ったところ,$59^\circ$であった.目の高さを$1.6 \; \mathrm{m}$とすると,塔の高さは$[ ] \, \mathrm{m}$である.(小数第$3$位を四捨五入すること.また,$\sin 59^\circ=0.8572$,$\cos 59^\circ=0.5150$,$\tan 59^\circ=1.6643$とする.)
(2)連立不等式$8x-12<4(x+2)<6x$を解くと,$[ ]$である.
(3)点$(0,\ a)$から円$x^2+y^2=1$に引いた$2$本の接線の傾きを$a$を用いて表すと,$[ ]$と$[ ]$である.(ただし,$|a|>1$とする.)
(4)ベクトル$\overrightarrow{a}=(1,\ 2,\ 1)$とベクトル$\overrightarrow{b}=(2,\ 1,\ -1)$のなす角を$\theta_1 (0^\circ \leqq \theta_1 \leqq 180^\circ)$とし,ベクトル$\overrightarrow{c}=(1,\ -1,\ 2)$とベクトル$\overrightarrow{d}=(-4,\ 2,\ 3)$のなす角を$\theta_2 (0^\circ \leqq \theta_2 \leqq 180^\circ)$とする.このとき,$\theta_1$と$\theta_2$の大小関係は$[ ]$である.
(5)次の和を求めよ.

(i) $1 \cdot 1+2 \cdot 3+3 \cdot 5+\cdots +n \cdot (2n-1)=[ ]$
(ii) $1 \cdot 1^2+2 \cdot 3^2+3 \cdot 5^2+\cdots +n \cdot (2n-1)^2=[ ]$

(6)次の値を求めよ.
$(ⅰ) \sqrt[6]{64}=[ ] \qquad (ⅱ) \sqrt[5]{0.00001}=[ ]$
$(ⅲ) \sqrt[3]{216}=[ ] \qquad \tokeishi \sqrt[3]{\sqrt{729}}=[ ]$
(7)$2$次方程式$x^2+2kx+(2k+3)=0$の$2$つの解を$\alpha,\ \beta$とするとき,$0<\alpha<1$,$2<\beta<3$となるような定数$k$の値の範囲は,$[ ]$である.
(8)赤色の球が$2$個,青色の球が$3$個,黄色の球が$4$個入った袋がある.この袋から同時に$3$個の球を取り出すとき,取り出した球に赤色の球が含まれない確率は$[ ]$であり,取り出した球の色が$2$種類である確率は$[ ]$である.
鳥取大学 国立 鳥取大学 2011年 第4問
半径$a\;$cmの球$B$を,球の中心を通る鉛直軸に沿って毎秒$v\;$cmの速さで下の方向に動かし,水で一杯に満たされた容器Qに沈めていく.球$B$を沈め始めてから$t$秒後までにあふれ出る水の体積を$V\;$cm$^3$とするとき,次の問いに答えよ.ただし,$a,\ v$は正の定数で,容器$Q$に球$B$を完全に水没させることができるとする.

(1)$V$を$a,\ v,\ t$の式で表せ.また変化率$\displaystyle \frac{dV}{dt}$が最大になるのは,沈め始めてから何秒後か.
(2)容器$Q$は一辺の長さが$b$の正四面体から一面を取り除いた形をしており,開口した面は水平に保たれている.球$B$は完全に水面下に入った瞬間,水面と容器$Q$の3つの面に接するという.$b$を$a$で表せ.
長崎大学 国立 長崎大学 2010年 第4問
$a$を$a>1$を満たす定数とする.原点Oと点P$(1,\ 0)$を線分で結び,点Pと点Q$(a,\ \log a)$を曲線$y=\log x$で結ぶ.このようにして得られる曲線OPQを,$y$軸の周りに1回転させてできる立体の容器を考える.ただし,OPを含む部分を底面として,水平に置くものとする.次の問いに答えよ.

(1)この容器の容積$V$を$a$を用いて表せ.
(2)$m$を正の定数とする.この容器に,単位時間あたり$m$の水を一定の割合で注ぎ入れる.ただし,最初は水が全く入っていない状態とする.注ぎ始めてから時間$\displaystyle t \ \left( 0<t<\frac{V}{m} \right)$が経過したとき,底面から水面までの高さを$h$,水面の上昇する速度を$v$とする.$h$および$v$を$m,\ t$を用いて表せ.
スポンサーリンク

「水平」とは・・・

 まだこのタグの説明は執筆されていません。