タグ「比較」の検索結果

4ページ目:全40問中31問~40問を表示)
富山大学 国立 富山大学 2010年 第2問
$\displaystyle f(x)=(1+x)^{\frac{1}{x}} \ (x>0)$とするとき,次の問いに答えよ.

(1)$\log f(x)$を微分することによって,$f(x)$の導関数を求めよ.
(2)$0<x_1<x_2$をみたす実数$x_1,\ x_2$に対して,$f(x_1)>f(x_2)$であることを証明せよ.
(3)$\displaystyle \left( \frac{101}{100} \right)^{101}$と$\displaystyle \left( \frac{100}{99} \right)^{99}$の大小を比較せよ.
東京医科歯科大学 国立 東京医科歯科大学 2010年 第1問
$a,\ b,\ c$を相異なる正の実数とするとき,以下の各問いに答えよ.

(1)次の$2$数の大小を比較せよ.
\[ a^3+b^3,\ a^2b+b^2a \]
(2)次の$4$数の大小を比較し,小さい方から順に並べよ.
\begin{eqnarray}
& & (a+b+c)(a^2+b^2+c^2),\quad (a+b+c)(ab+bc+ca), \nonumber \\
& & 3(a^3+b^3+c^3),\quad 9abc \nonumber
\end{eqnarray}
(3)$x,\ y,\ z$を正の実数とするとき
\[ \frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z} \]
のとりうる値の範囲を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2010年 第1問
$a,\ b,\ c$を相異なる正の実数とするとき,以下の各問いに答えよ.

(1)次の$2$数の大小を比較せよ.
\[ a^3+b^3,\ a^2b+b^2a \]
(2)次の$4$数の大小を比較し,小さい方から順に並べよ.
\begin{eqnarray}
& & (a+b+c)(a^2+b^2+c^2),\quad (a+b+c)(ab+bc+ca), \nonumber \\
& & 3(a^3+b^3+c^3),\quad 9abc \nonumber
\end{eqnarray}
(3)$x,\ y,\ z$を正の実数とするとき
\[ \frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z} \]
のとりうる値の範囲を求めよ.
大分大学 国立 大分大学 2010年 第1問
円周率$\pi$に関して次の不等式が成立することを証明せよ.ただし,数値$\pi=3.141592 \cdots$を使用して直接比較する解答は0点とする.
\[ 3\sqrt{6} -3\sqrt{2} <\pi <24-12\sqrt{3} \]
秋田大学 国立 秋田大学 2010年 第1問
$2$次方程式$x^2 \sin \theta - x \cos(2\theta) + \sin \theta = 0$が重解をもつとき,次の問いに答えよ.ただし,$\theta$は$\displaystyle 0 < \theta < \frac{\pi}{2}$を満たす定数とする.

(1)$\sin \theta$の値を求めよ.
(2)$\displaystyle \sin \frac{\pi}{12}$の値を求めよ.
(3)$\theta$と$\displaystyle \frac{\pi}{12}$の大小を比較せよ.
九州工業大学 国立 九州工業大学 2010年 第4問
次に答えよ.ただし,対数は自然対数とする.必要ならば,$1.09<\log 3<1.10$を用いてよい.

(1)すべての$x>0$に対して,不等式
\[ x-\frac{x^2}{2} < \log (1+x) \]
が成り立つことを示せ.
(2)関数$\displaystyle f(x)=x-\frac{x^2}{3}-\log (1+x)$の$0 \leqq x \leqq 2$における最大値,および最小値を求めよ.
(3)方程式$\displaystyle x-\frac{x^2}{3}=\log (1+x)$は$0<x<2$の範囲に解を1つだけもつことを示せ.
(4)(3)における解を$\alpha \ (0<\alpha<2)$とする.曲線$\displaystyle y=x-\frac{x^2}{3}$と曲線$y=\log (1+x)$で囲まれた図形($0 \leqq x \leqq \alpha$の部分)の面積を$S$とする.また,曲線$\displaystyle y=x-\frac{x^2}{3}$,$y=\log (1+x)$と直線$x=2$で囲まれた図形($\alpha \leqq x \leqq 2$の部分)の面積を$T$とする.$S$と$T$の大小を比較せよ.
早稲田大学 私立 早稲田大学 2010年 第4問
$n$を正の整数とする.

(1)$x>y>0$とするとき,次の不等式を証明せよ.
\[ x^{n+1}-y^{n+1} > (n+1)(x-y)y^n \]
(2)$\displaystyle \left(1+\frac{1}{n}\right)^{n+1}$と$\displaystyle \left(1+\frac{1}{n+1}\right)^{n+2}$の大小を比較せよ.
中央大学 私立 中央大学 2010年 第2問
不等式
\[ 19200<19683=3^9<20000<20480=2^{11} \cdot 10 \]
を利用して,以下の設問に答えよ.ただし,$x=\log_{10}2$,$y=\log_{10}3$とする.

(1)$\log_{10}19200$の値を$x$と$y$で表せ.
(2)$x$と$\displaystyle \frac{3}{10}$の大小を比較せよ.

(3)$y$と$\displaystyle \frac{11}{23}$の大小を比較せよ.
大阪市立大学 公立 大阪市立大学 2010年 第4問
$a,\ b$は$a < b$をみたす実数とする.$f(x),\ g(x)$は閉区間$[ \; a,\ b \; ]$で定義された連続関数で,$g(x) \leqq f(x)$をみたすとする.座標平面上,不等式$a \leqq x \leqq b,\ g(x) \leqq y \leqq f(x)$をみたす点$(x,\ y)$全体からなる図形をAとする.Aの面積$S$が正のとき,Aの重心の$y$座標は,
\[ \frac{1}{S} \int_a^b \frac{\{f(x)\}^2-\{g(x)\}^2}{2} \, dx \]
で与えられる.この事実を用いて,次の問いに答えよ.

(1)$r$は$0 < r < 1$をみたす実数とする.不等式$r^2 \leqq x^2 + y^2 \leqq 1,\ y \geqq 0$をみたす点$(x,\ y)$全体からなる図形をBとおく.Bの重心の$y$座標$Y(r)$を$r$を用いて表せ.
(2)$t$は正の実数とする.不等式$-1 \leqq x \leqq 1,\ \sqrt{1-x^2} -t \leqq y \leqq \sqrt{1-x^2}$をみたす点$(x,\ y)$全体からなる図形をCとおく.Cの重心の$y$座標$Z(t)$を$t$を用いて表せ.
(3)(1)で得られた$Y(r)$と(2)で得られた$Z(t)$について,$\displaystyle \lim_{r \to 1-0}Y(r)$と$\displaystyle \lim_{t \to +0}Z(t)$の大小を比較せよ.
高崎経済大学 公立 高崎経済大学 2010年 第1問
以下の各問に答えよ.

(1)$7^x=49^{1-x}$を解け.
(2)$\displaystyle x=\frac{\sqrt{5}-3}{2}$のとき,$x^4+x^2$の値を求めよ.
(3)次の定積分を求めよ.
\[ \int_{-2}^0 (2x^2-x) \, dx - \int_1^0 (2x^2-x) \, dx \]
(4)関数$y=(2x-1)(x^2+2x-1)$を微分せよ.
(5)$\displaystyle 3\log_{\frac{1}{2}}3, 2\log_{\frac{1}{2}}5, \frac{5}{2}\log_{\frac{1}{2}}4$の3数の大小を比較せよ.
(6)$\overrightarrow{a}=(1,\ -1),\ \overrightarrow{b}=(-4,\ -3)$のとき,$2\overrightarrow{a}+2\overrightarrow{b}$の大きさを求めよ.
(7)初項から第$n$項までの和$S_n$が$S_n=2n^2-3n$で与えられる数列$\{a_n\}$の一般項を求めよ.
(8)$0 \leqq \theta < 2\pi$のとき,不等式$\displaystyle |\sin \theta|<\frac{1}{2}$を解け.
スポンサーリンク

「比較」とは・・・

 まだこのタグの説明は執筆されていません。