タグ「残り」の検索結果

2ページ目:全56問中11問~20問を表示)
横浜市立大学 公立 横浜市立大学 2016年 第1問
以下の問いに答えよ.

(1)ある大学で$N$人の学生が数学を受験した.その得点を$x_1,\ x_2,\ \cdots,\ x_N$とする.平均値$\overline{x}$および分散$s^2$は各々

$\displaystyle \overline{x}=\frac{x_1+x_2+\cdots +x_N}{N}$
$\displaystyle s^2=\frac{(x_1-\overline{x})^2+(x_2-\overline{x})^2+\cdots +(x_N-\overline{x})^2}{N}$

で与えられる.標準偏差$s (>0)$は
\[ s=\sqrt{s^2} \]
となる.このとき$x$点を取った学生の{\bf 偏差値}は
\[ t=50+10 \times \frac{x-\overline{x}}{s} \]
で与えられる($x \in \{x_1,\ x_2,\ \cdots,\ x_N\}$).偏差値は{\bf 無単位}であることに注意せよ.
$\mathrm{Y}$大学で$N=3n$人の学生が数学を受験し,たまたま$2n$人の学生が$a$点,残りの$n$人の学生が$b$点を取ったとしよう.簡単にするために$a<b$とする.$a$点を取った学生および$b$点を取った学生の偏差値を求めよ.
(2)方程式
\[ x^2-3y^2=13 \]
の整数解を求める.簡単にするために$x>0,\ y>0$とする.まず
\[ X=ax+by,\quad Y=cx+dy \]
とおく.$a,\ b,\ c,\ d$を自然数として,$(X,\ Y)$が再び方程式
\[ X^2-3Y^2=13 \]
を満たすための組$(a,\ b,\ c,\ d)$を$1$つ求めよ.
次に,解の組$(x,\ y)$で$x>500$となる$(x,\ y)$を$1$つ求めよ.
(3)$n$を自然数とする.漸化式

$a_{n+2}-5a_{n+1}+6a_n-6n=0$
$a_1=1,\ a_2=1$

で定められる数列$\{a_n\}$の一般項を求めよ.
(4)$n$を$0$以上の整数とする.以下の不定積分を求めよ.
\[ \int \left\{ -\frac{(\log x)^n}{x^2} \right\} \, dx=\sum_{k=0}^n [ ] \]
ただし,積分定数は書かなくてよい.
一橋大学 国立 一橋大学 2015年 第3問
$n$を$4$以上の整数とする.正$n$角形の$2$つの頂点を無作為に選び,それらを通る直線を$\ell$とする.さらに,残りの$n-2$個の頂点から$2$つの頂点を無作為に選び,それらを通る直線を$m$とする.直線$\ell$と$m$が平行になる確率を求めよ.
弘前大学 国立 弘前大学 2015年 第1問
$3$辺の長さが$2,\ 3,\ 4$の三角形について次の問いに答えよ.

(1)内角が最大の頂点を$\mathrm{A}$,最小の頂点を$\mathrm{B}$とするとき,$\cos \angle \mathrm{A}$,$\cos \angle \mathrm{B}$を求めよ.
(2)残りの頂点を$\mathrm{C}$とする.また$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$はそれぞれ辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$上の点で,$\mathrm{AP}=\mathrm{BQ}=\mathrm{CR}$をみたすとする.このとき,$\mathrm{AQ}^2+\mathrm{BR}^2+\mathrm{CP}^2$の最大値と最小値を求めよ.
愛媛大学 国立 愛媛大学 2015年 第4問
$a$を正の実数とするとき,次の問いに答えよ.

(1)$1$辺の長さが$1$,他の$2$辺のうち$1$辺の長さが$a$である三角形のなかで,面積が最大である三角形の残りの$1$辺の長さを$a$を用いて表せ.
(2)$2$辺の長さが$1$,他の$2$辺のうち$1$辺の長さが$a$である四角形のなかで,面積が最大である四角形の残りの$1$辺の長さを$a$を用いて表せ.
藤田保健衛生大学 私立 藤田保健衛生大学 2015年 第1問
原点を中心とした半径$1$の円に内接する正三角形$T_1$がある.$T_1$の頂点の$1$つが$\mathrm{A}(0,\ 1)$であり,$T_1$の残りの頂点のうち,$x$座標が負の値である方を$\mathrm{B}$とする.また,$T_1$を原点に関して対称移動したものを$T_2$とする.

(1)直線$\mathrm{AB}$の方程式は,$[$1$]$である.
(2)直線$\mathrm{AB}$と$T_2$の辺との交点のうち,$x$座標の値が大きい方の座標は$(x,\ y)=[$2$]$である.
(3)$T_1$と$T_2$が重なる部分の面積は$[$3$]$である.
龍谷大学 私立 龍谷大学 2015年 第3問
一辺$30 \, \mathrm{cm}$の正方形の厚紙の四隅から,一辺の長さが$x \, \mathrm{cm}$の正方形を切り取って,その残りを折り曲げ,ふたのない直方体の箱を作る.この箱の容積を$V(x) \, \mathrm{cm}^3$とする.

(1)$V(x)$の最大値を求めなさい.
(2)$V(x)=1000$となるときの$x$の値をすべて求めなさい.
東京理科大学 私立 東京理科大学 2015年 第2問
$11$人の生徒$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\cdots$,$\mathrm{K}$がいる.

(1)$4$人ずつ$2$組と,残り$3$人の組に分ける方法は$\kakkofour{ア}{イ}{ウ}{エ}$通りである.
(2)$(1)$のような分け方のうち,生徒$\mathrm{A}$と生徒$\mathrm{B}$が同じ$4$人の組に入るような方法は$\kakkofour{オ}{カ}{キ}{ク}$通りである.また,生徒$\mathrm{A}$と生徒$\mathrm{B}$が同じ$3$人の組に入るような方法は$[ケ][コ][サ]$通りである.
(3)$(1)$のような分け方のうち,生徒$\mathrm{A}$と生徒$\mathrm{B}$と生徒$\mathrm{C}$が異なる組に入るような方法は$\kakkofour{シ}{ス}{セ}{ソ}$通りである.
(4)また,$11$人を$2$組に分ける方法は$\kakkofour{タ}{チ}{ツ}{テ}$通りである.ただし,どちらの組も$1$人以上の生徒が入るものとする.
早稲田大学 私立 早稲田大学 2015年 第5問
直線
\[ \ell:x \sin \theta+y \cos \theta=1 \quad \left( 0<\theta<\frac{\pi}{2} \right) \]
に接する$4$つの円を考える.

$x \sin \theta+y \cos \theta<1$の領域で$2$つの円は互いに接しており,そのうち$1$つの円は直線$\ell$と$x$軸に,もう一方の円は直線$\ell$と$y$軸に接している.これらの円の半径はいずれも$r_1$である.このとき
\[ r_1=\frac{1}{[ソ]t^2+[タ]t} \quad (\text{ただし}t=\sin \theta+\cos \theta) \]
となる.
残りの$2$つの円は,$x \sin \theta+y \cos \theta>1$の領域で互いに接しており,そのうち$1$つの円は直線$\ell$と$x$軸に,もう一方の円は直線$\ell$と$y$軸に接している.これらの円の半径はいずれも$r_2$である.このとき
\[ r_2=\frac{1}{[チ]t^2+[ツ]t+[テ]} \quad (\text{ただし}t=\sin \theta+\cos \theta) \]
となる.
したがって
\[ [ト]<\frac{r_1}{r_2} \leqq \sqrt{[ナ]}+[ニ] \]
である.
南山大学 私立 南山大学 2015年 第1問
$[ ]$の中に答を入れよ.

(1)$a,\ b$を実数とする.$x$の方程式$x^3+ax^2+6x+b=0$の$1$つの解が$x=-1+i$であるとき,$a,\ b$の値を求めると$(a,\ b)=[ア]$であり,残りの解は$x=[イ]$である.
(2)$x>0$とする.不等式$(\log_2 x)^2-5 \log_2 x-6<0$を解くと$[ウ]$である.また,$x$の方程式$x^{\log_2 x}=2^a x^5$が解をもつような$a$の値の範囲を求めると$[エ]$である.
(3)実数$a,\ b,\ c,\ k$が$5a-b-c=ka$,$-a+5b-c=kb$,$-a-b+5c=kc$,$abc \neq 0$を満たしている.このとき,$k$の値を求めると$k=[オ]$であり,$\displaystyle R=\frac{(a+b)(b+c)(c+a)}{abc}$の値を求めると$R=[カ]$である.
(4)$4$人がじゃんけんを$1$回するとき,$1$人だけが勝つ確率は$[キ]$であり,誰も勝たない確率は$[ク]$である.ただし,各人がグー,チョキ,パーを出す確率は,それぞれ$\displaystyle \frac{1}{3}$である.
東京理科大学 私立 東京理科大学 2015年 第1問
次の$[ ]$内にあてはまる$0$から$9$までの数字を求めよ.

(1)$\displaystyle f(x)=4x^4+8x^3+3x^2-2x+\frac{1}{4}$,$\displaystyle g(x)=4x^4-8x^3+3x^2+2x+\frac{1}{4}$で定められる関数に対して,

$f(x)$は$\displaystyle x=-\frac{[ア]}{[イ]}+\frac{[ウ]}{[エ]} \sqrt{3}$において最小値$\displaystyle \frac{[オ][カ]}{[キ][ク]}-\frac{[ケ]}{[コ]} \sqrt{3}$をとり,

$g(x)$は$\displaystyle x=\frac{[サ]}{[シ]}-\frac{[ス]}{[セ]} \sqrt{3}$において最小値$\displaystyle \frac{[ソ][タ]}{[チ][ツ]}-\frac{[テ]}{[ト]} \sqrt{3}$をとる.

(2)$a$を正の実数とし,座標平面上の$2$曲線$\displaystyle B_1:y={\left( \frac{a}{\pi} x \right)}^2$と$B_2:y=\sin x$の$0<x<\pi$における交点の$x$座標を$t$,$0 \leqq x \leqq t$において$2$曲線で囲まれた領域の面積を$S$とすると,
\[ S=[ナ]-\frac{[ニ]}{[ヌ]}t \sin t-[ネ] \cos t \]
である.
$a=2$のとき,$\displaystyle t=\frac{[ノ]}{[ハ]} \pi$である.

$0<a \leqq 2$に対して$S$がとり得る値の範囲は
\[ [ヒ]-\frac{[フ]}{[ヘ]} \pi \leqq S<[ホ] \]
である.
(3)空調のある$1$号室,$2$号室,$3$号室は電力事情により,同時に$1$部屋しか空調の電源をオンにできない.最初は$1$号室の電源をオンにすることにし,それ以降は$1$時間ごとに大小の$2$つの公平なさいころをふって,どの部屋の電源をオンにするかを以下のように決める.
\begin{itemize}
大きい方のさいころの目が奇数ならば,小さい方の目にかかわらず同じ部屋の電源をオンにしたままとする.
大きい方のさいころの目が偶数ならば,残りの$2$つの部屋のどちらか一方の電源をオンにする.その際,小さい方のさいころの目が奇数ならば,番号の小さい部屋の電源,偶数ならば番号の大きい方の電源をオンにする.
\end{itemize}
自然数$n$に対して,$1$号室の電源を最初にオンにした時から$n$時間後に,$1$号室の空調の電源をオンにする確率を$a_n$,$2$号室の空調の電源をオンにする確率を$b_n$,$3$号室の空調の電源をオンにする確率を$c_n$とする.


(i) $\displaystyle a_1=\frac{[マ]}{[ミ]}$,$\displaystyle b_1=\frac{[ム]}{[メ]}$,$\displaystyle c_1=\frac{[モ]}{[ヤ]}$である.

すべての自然数$n$に対して以下が成り立つ.
(ii) $a_n+b_n+c_n=[ユ]$

(iii) $\displaystyle a_{n+1}=\frac{[ヨ]}{[ラ]}a_n+\frac{[リ]}{[ル]}b_n+\frac{[リ]}{[ル]}c_n$

\mon[$\tokeishi$] $\displaystyle a_n=\frac{[レ]}{[ロ]} {\left( \frac{[ワ]}{[ヲ]} \right)}^n+\frac{[ン]}{[あ]}$

$\displaystyle b_n=-\frac{[い]}{[う]} {\left( \frac{[え]}{[お]} \right)}^n+\frac{[か]}{[き]}$

$\displaystyle c_n=-\frac{[く]}{[け]} {\left( \frac{[こ]}{[さ]} \right)}^n+\frac{[し]}{[す]}$
スポンサーリンク

「残り」とは・・・

 まだこのタグの説明は執筆されていません。