タグ「正六角形」の検索結果

1ページ目:全44問中1問~10問を表示)
九州大学 国立 九州大学 2016年 第3問
座標平面上で円$x^2+y^2=1$に内接する正六角形で,点$\mathrm{P}_0(1,\ 0)$を$1$つの頂点とするものを考える.この正六角形の頂点を$\mathrm{P}_0$から反時計まわりに順に$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$,$\mathrm{P}_5$とする.ある頂点に置かれている$1$枚のコインに対し,$1$つのサイコロを$1$回投げ,出た目に応じてコインを次の規則にしたがって頂点上を動かす.


\mon[(規則)$(ⅰ)$] $1$から$5$までの目が出た場合は,出た目の数だけコインを反時計まわりに動かす.例えば,コインが$\mathrm{P}_4$にあるときに$4$の目が出た場合は$\mathrm{P}_2$まで動かす.
(ii) $6$の目が出た場合は,$x$軸に関して対称な位置にコインを動かす.ただし,コインが$x$軸上にあるときは動かさない.例えば,コインが$\mathrm{P}_5$にあるときに$6$の目が出た場合は$\mathrm{P}_1$に動かす.

はじめにコインを$1$枚だけ$\mathrm{P}_0$に置き,$1$つのサイコロを続けて何回か投げて,$1$回投げるごとに上の規則にしたがってコインを動かしていくゲームを考える.以下の問いに答えよ.

(1)$2$回サイコロを投げた後に,コインが$\mathrm{P}_0$の位置にある確率を求めよ.
(2)$3$回サイコロを投げた後に,コインが$\mathrm{P}_0$の位置にある確率を求めよ.
(3)$n$を自然数とする.$n$回サイコロを投げた後に,コインが$\mathrm{P}_0$の位置にある確率を求めよ.
立教大学 私立 立教大学 2016年 第1問
次の空欄$[ア]$~$[サ]$に当てはまる数または式を記入せよ.

(1)$0 \leqq \theta \leqq \pi$の範囲で,$\cos^2 \theta+\sin \theta \cos \theta=0$を満たす$\theta$をすべて求めると$\theta=[ア]$である.
(2)$10$本のくじのうち当たりくじは$n$本である.同時に$2$本のくじを引いたとき,$2$本ともはずれである確率は$\displaystyle \frac{1}{15}$であった.このとき,$n=[イ]$である.
(3)$\mathrm{AB}=20$,$\mathrm{BC}=24$,$\mathrm{AC}=16$である三角形$\mathrm{ABC}$において,$\angle \mathrm{A}$の二等分線が$\mathrm{BC}$と交わる点を$\mathrm{D}$とする.このとき,$\mathrm{BD}=[ウ]$である.
(4)頂点が反時計回りに$\mathrm{ABCDEF}$である正六角形について,$\overrightarrow{\mathrm{FB}}=a \overrightarrow{\mathrm{AB}}+b \overrightarrow{\mathrm{AC}}$と表したとき,$a=[エ]$,$b=[オ]$である.ただし,$a$と$b$は実数とする.
(5)$(3+i)(x+yi)=6+5i$を満たす実数$x,\ y$を求めると,$x=[カ]$,$y=[キ]$である.ただし,$i$は虚数単位とする.
(6)直線$\ell$に関して点$(3,\ 2)$と対称な点は$(1,\ 4)$である.このとき,直線$\ell$の方程式を$ax+by=1$とすると,$a=[ク]$,$b=[ケ]$である.
(7)$975$の正の約数の個数は$[コ]$個である.
(8)$-1 \leqq x \leqq 5$の範囲で,関数$\displaystyle f(x)=\int_{-3}^x (t^2-2t-3) \, dt$が最小値をとるのは$x=[サ]$のときである.
名城大学 私立 名城大学 2016年 第2問
$t$を正の実数とし,$3$点$\mathrm{A}(t,\ t,\ t)$,$\mathrm{B}(1,\ 0,\ 0)$,$\mathrm{C}(0,\ 1,\ 0)$を頂点とする三角形$\mathrm{ABC}$が,正三角形であるとする.このとき,次の各問に答えよ.

(1)$t$の値を求めよ.
(2)三角形$\mathrm{ABC}$の重心の座標を求めよ.
(3)平面$\mathrm{ABC}$上の六角形$\mathrm{ARBPCQ}$が正六角形となるような点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$の座標を求めよ.
津田塾大学 私立 津田塾大学 2016年 第2問
$1$辺の長さが$L \, \mathrm{cm}$の正六角形から図のように斜線部を取り除き,点線にそって${90}^\circ$折り曲げて,底面と側面だけからなる正六角柱の容器を作る.この容器の容積の最大値を求めよ.
(図は省略)
和歌山大学 国立 和歌山大学 2015年 第3問
正六角形$\mathrm{ABCDEF}$において,辺$\mathrm{BC}$の中点を$\mathrm{G}$,辺$\mathrm{DE}$を$t:(1-t)$に内分する点を$\mathrm{H}$とする.ただし,$0<t<1$である.$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AF}}=\overrightarrow{b}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AC}}$,$\overrightarrow{\mathrm{AG}}$,$\overrightarrow{\mathrm{AH}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)直線$\mathrm{CF}$と直線$\mathrm{GH}$の交点を$\mathrm{I}$とするとき,$\mathrm{GI}:\mathrm{IH}$を求めよ.
(3)さらに,直線$\mathrm{AI}$と直線$\mathrm{CD}$の交点を$\mathrm{J}$とする.点$\mathrm{J}$が線分$\mathrm{CD}$を$1:2$に内分するとき,$t$の値を求めよ.
和歌山大学 国立 和歌山大学 2015年 第3問
正六角形$\mathrm{ABCDEF}$において,辺$\mathrm{BC}$の中点を$\mathrm{G}$,辺$\mathrm{DE}$を$t:(1-t)$に内分する点を$\mathrm{H}$とする.ただし,$0<t<1$である.$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AF}}=\overrightarrow{b}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AC}}$,$\overrightarrow{\mathrm{AG}}$,$\overrightarrow{\mathrm{AH}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)直線$\mathrm{CF}$と直線$\mathrm{GH}$の交点を$\mathrm{I}$とするとき,$\mathrm{GI}:\mathrm{IH}$を求めよ.
(3)さらに,直線$\mathrm{AI}$と直線$\mathrm{CD}$の交点を$\mathrm{J}$とする.点$\mathrm{J}$が線分$\mathrm{CD}$を$1:2$に内分するとき,$t$の値を求めよ.
滋賀大学 国立 滋賀大学 2015年 第4問
座標平面において,点$\mathrm{O}(0,\ 0)$を中心とする半径$1$の円に内接する正六角形のうち,点$\mathrm{A}_1(1,\ 0)$を$1$つの頂点とするものを考え,その頂点を$\mathrm{A}_1$から反時計回りに,$\mathrm{B}_1$,$\mathrm{C}_1$,$\mathrm{D}_1$,$\mathrm{E}_1$,$\mathrm{F}_1$とする.同様に,$2$以上の自然数$n$に対して,$\mathrm{O}$を中心とする半径$n$の円に内接する正六角形のうち,点$\mathrm{A}_n(n,\ 0)$を$1$つの頂点とするものを考え,その頂点を$\mathrm{A}_n$から反時計回りに,$\mathrm{B}_n$,$\mathrm{C}_n$,$\mathrm{D}_n$,$\mathrm{E}_n$,$\mathrm{F}_n$とする.$\overrightarrow{\mathrm{OA}_1}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}_1}=\overrightarrow{b}$とするとき,次の問いに答えよ.
(図は省略)

(1)$\overrightarrow{\mathrm{OC}_1}$,$\overrightarrow{\mathrm{B}_3 \mathrm{C}_7}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(2)$s,\ t$を実数として,$\overrightarrow{\mathrm{OP}}=s \overrightarrow{a}+t \overrightarrow{b}$と表される点$\mathrm{P}$が,正六角形$\mathrm{A}_n \mathrm{B}_n \mathrm{C}_n \mathrm{D}_n \mathrm{E}_n \mathrm{F}_n$の辺$\mathrm{A}_n \mathrm{F}_n$上にあるための必要十分条件を$s,\ t,\ n$を用いて表せ.ただし,$n$は自然数とし,頂点$\mathrm{A}_n$,$\mathrm{F}_n$は辺$\mathrm{A}_n \mathrm{F}_n$上の点とする.
(3)点$\mathrm{B}_3$,$\mathrm{C}_7$,$\mathrm{E}_2$と辺$\mathrm{A}_n \mathrm{F}_n$上の点$\mathrm{P}$がある平行四辺形の頂点となるような自然数$n$を求め,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
埼玉工業大学 私立 埼玉工業大学 2015年 第2問
正六角形$\mathrm{ABCDEF}$において,$\mathrm{DE}$の中点を$\mathrm{M}$,$\mathrm{AM}$の中点を$\mathrm{N}$,$\mathrm{BC}$の中点を$\mathrm{P}$とする.

(1)$\overrightarrow{\mathrm{AM}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AF}}$で表すと
\[ \overrightarrow{\mathrm{AM}}=\frac{[チ]}{[ツ]} \overrightarrow{\mathrm{AB}}+[テ] \overrightarrow{\mathrm{AF}} \]
となる.また,$\overrightarrow{\mathrm{NP}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AF}}$で表すと
\[ \overrightarrow{\mathrm{NP}}=\frac{[ト]}{[ナ]} \overrightarrow{\mathrm{AB}}+\frac{[ニヌ]}{[ネ]} \overrightarrow{\mathrm{AF}} \]
となる.
(2)内積$\overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{AD}}=1$のとき
\[ \overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AF}}=\frac{[ノハ]}{[ヒ]} \]
となる.
日本女子大学 私立 日本女子大学 2015年 第4問
$1$辺の長さが$1$の正六角形の頂点の$1$つを$\mathrm{A}$とする.頂点$\mathrm{A}$を出発し,正六角形の辺上を時計回りに動く点$\mathrm{P}$がある.$1$個のさいころを投げて,$1$または$6$の目が出たときには点$\mathrm{P}$は$2$だけ進み,他の目が出たときには点$\mathrm{P}$は$1$だけ進む.さいころを繰り返し投げ,点$\mathrm{P}$が頂点$\mathrm{A}$にもどるか,頂点$\mathrm{A}$を通り越したら,さいころ投げは終了する.さいころ投げが終了したとき,点$\mathrm{P}$が頂点$\mathrm{A}$にある確率を求めよ.
崇城大学 私立 崇城大学 2015年 第3問
$1$辺の長さが$1$の正六角形$\mathrm{ABCDEF}$において,辺$\mathrm{BC}$を$2:1$に内分する点を$\mathrm{M}$,辺$\mathrm{CD}$上の点を$\mathrm{N}$とし,$\mathrm{MF}$と$\mathrm{AN}$の交点を$\mathrm{P}$とする.次の各問に答えよ.

(1)$\cos \angle \mathrm{AFM}$の値を求めよ.
(2)$\mathrm{AP}:\mathrm{PN}=20:13$のとき,$\mathrm{CN}:\mathrm{ND}$を求めよ.
スポンサーリンク

「正六角形」とは・・・

 まだこのタグの説明は執筆されていません。