タグ「正の数」の検索結果

1ページ目:全65問中1問~10問を表示)
岡山大学 国立 岡山大学 2016年 第3問
$a$は正の数とし,次の関数$y=f_a(x)$のグラフの変曲点を$\mathrm{P}$とする.
\[ f_a(x)=axe^{-\frac{x}{a}} \quad (x \geqq 0) \]
このとき以下の問いに答えよ.

(1)点$\mathrm{P}$の座標を求めよ.
(2)$a$が区間$1 \leqq a \leqq 2$全体を動くとき,点$\mathrm{P}$が描く曲線$C$の概形を図示せよ.
(3)$x \geqq 0$における曲線$y=f_1(x)$,$y=f_2(x)$と$(2)$の曲線$C$の$3$曲線で囲まれた部分の面積を求めよ.
室蘭工業大学 国立 室蘭工業大学 2016年 第4問
各項が正の数である$2$つの数列$\{a_n\}$,$\{b_n\}$は

$a_1=1,\quad b_1=e,$
$\displaystyle a_{n+1}={a_n}^5 \cdot {b_n}^{3},\quad b_{n+1}=\frac{b_n}{a_n} \quad (n=1,\ 2,\ 3,\ \cdots)$

を満たすとする.ただし,$e$は自然対数の底とする.

(1)$c_n=\log a_n$,$d_n=\log b_n$とおく.ただし,対数は自然対数とする.
\[ c_{n+1}+\alpha d_{n+1}=\beta (c_n+\alpha d_n) \]
を満たす定数$\alpha,\ \beta$の組をすべて求めよ.
(2)数列$\{a_n\},\ \{b_n\}$の一般項を求めよ.
熊本大学 国立 熊本大学 2016年 第4問
$2$次関数$f(x)$に対して
\[ F(x)=\int_0^x f(t) \, dt \]
とおく.$a$を正の数とし,$F(x)$が$x=a$と$x=-a$で極値をとるとき,以下の問いに答えよ.

(1)すべての$x$について$F(-x)=-F(x)$が成り立つことを示せ.
(2)$F(x)+F(a)=0$を満たす$x$をすべて求めよ.

(3)関数$\displaystyle \frac{F(x)}{F^\prime(0)}$の極大値を求めよ.
奈良女子大学 国立 奈良女子大学 2016年 第1問
三角形$\mathrm{ABC}$において,辺$\mathrm{AB}$を$2:3$に内分する点を$\mathrm{P}$,辺$\mathrm{AC}$を$1:2$に内分する点を$\mathrm{Q}$とする.正の数$m$に対して,線分$\mathrm{PC}$を$m:1$に内分する点を$\mathrm{R}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおく.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AP}}$と$\overrightarrow{\mathrm{AQ}}$を$\overrightarrow{b}$と$\overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{QR}}$を$\overrightarrow{b},\ \overrightarrow{c},\ m$を用いて表せ.
(3)$|\overrightarrow{b|}=3$,$|\overrightarrow{c|}=2$,$\angle \mathrm{BAC}={60}^\circ$であり,$\overrightarrow{\mathrm{QR}}$と$\overrightarrow{\mathrm{BC}}$は垂直であるとき,$m$の値を求めよ.
静岡大学 国立 静岡大学 2016年 第4問
ある高等学校の$3$年生は徒歩通学か自転車通学のいずれかである.このなかから調査対象の集団をいろいろと変えて,そのなかから生徒を無作為に$1$人選ぶ.

(i) 対象の集団を$3$年生全体とするとき,その生徒が徒歩通学である確率は$a$であり,男子生徒である確率は$b$である.
(ii) 対象の集団を男子生徒とするとき,その生徒が徒歩通学である確率は$c$である.

$a,\ b,\ c$を正の数とするとき,次の各問に答えよ.

(1)対象の集団を徒歩通学の生徒とするとき,その生徒が男子生徒である確率を$a,\ b,\ c$を用いて表せ.
(2)対象の集団を$3$年生全体とするとき,その生徒が徒歩通学かまたは男子生徒である確率を$a,\ b,\ c$を用いて表せ.
(3)$3$年生全体が$100$人で,自転車通学の女子生徒が$30$人であるとする.$a=c$であるとき,$a$の値をすべて求めよ.
熊本大学 国立 熊本大学 2016年 第1問
$\triangle \mathrm{ABC}$と,$\mathrm{A}$を通り$\mathrm{BC}$に平行な直線$\ell$を考える.$k$を正の数とし,直線$\ell$上に点$\mathrm{P}$を$\overrightarrow{\mathrm{AP}}=k \overrightarrow{\mathrm{BC}}$となるようにとる.また直線$\ell$上に点$\mathrm{Q}$を,線分$\mathrm{PB}$と線分$\mathrm{QC}$が$1$点で交わるようにとる.その交点を$\mathrm{R}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおき,また$m$を$\overrightarrow{\mathrm{AQ}}=m \overrightarrow{\mathrm{AP}}$により定める.以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{AR}}$を$\overrightarrow{b},\ \overrightarrow{c},\ k,\ m$を用いて表せ.
(2)$|\overrightarrow{b|}=1$,$|\overrightarrow{c|}=2$,$\displaystyle \cos \angle \mathrm{BAC}=\frac{3}{4}$,$m=-1$とする.$\overrightarrow{\mathrm{BR}}$と$\overrightarrow{\mathrm{CR}}$が直交するとき,$k$の値を求めよ.
九州工業大学 国立 九州工業大学 2016年 第2問
$s>0$,$t>0$とする.正の数からなる$2$つの数列$\{a_n\}$,$\{b_n\}$は初項と第$2$項が$a_1=b_1=s$,$a_2=b_2=t$であり,すべての自然数$n$に対して
\[ a_{n+2}=\frac{a_{n+1}+a_n}{2},\quad b_{n+2}=\sqrt{b_{n+1}b_n} \]
をみたすとする.次に答えよ.

(1)$a_3,\ b_3,\ a_4,\ b_4$を$s,\ t$を用いて表せ.
(2)自然数$n$に対して,$c_n=a_{n+1}-a_n$とおく.数列$\{c_n\}$は等比数列であることを示し,一般項を求めよ.さらに,数列$\{a_n\}$の一般項を求めよ.
(3)自然数$n$に対して,$d_n=\log b_n$とおく.数列$\{d_n\}$の一般項を求めよ.さらに,数列$\{b_n\}$の一般項を$s$の累乗と$t$の累乗を用いて表せ.ただし,対数は自然対数とする.
(4)$\displaystyle \lim_{n \to \infty}a_n$と$\displaystyle \lim_{n \to \infty}b_n$を求めよ.
(5)$t=s$は$\displaystyle \lim_{n \to \infty}a_n=\lim_{n \to \infty}b_n$であるための必要十分条件であることを示せ.
長崎大学 国立 長崎大学 2016年 第1問
以下の問いに答えよ.

(1)放物線$y=x^2-x$の頂点を$\mathrm{P}$とする.点$\mathrm{Q}$はこの放物線上の点であり,原点$\mathrm{O}(0,\ 0)$とも点$\mathrm{P}$とも異なるとする.$\angle \mathrm{OPQ}$が直角であるとき,点$\mathrm{Q}$の座標を求めよ.
(2)関数$f(x)$は以下の条件(イ),(ロ),(ハ)を満たす.そのような正の数$a$の値と$f(x)$を求めよ.

(イ)$f^\prime(x)=x^2+ax$
(ロ)$f(0)=-1$
(ハ)$f(x)$の極大値と極小値の差が$\displaystyle \frac{4}{81}$

(3)方程式$2(\log_2 x)^2-7 |\log_2 x|-4=0$を解け.
(4)$0 \leqq x \leqq 2\pi$のとき,不等式$\sin 3x+\sin 2x<\sin x$を解け.
長崎大学 国立 長崎大学 2016年 第3問
関数$f(x)=xe^x$で定まる曲線$C:y=f(x)$を考える.$p$を正の数とする.以下の問いに答えよ.

(1)$f^\prime(x)$と$f^{\prime\prime}(x)$を求めよ.また,すべての$x$について
\[ \{ (ax+b)e^x \}^\prime=f(x) \]
が成り立つような定数$a,\ b$の値を求めよ.
(2)曲線$C$上の点$\mathrm{P}(p,\ f(p))$における$C$の接線を$\ell:y=c(x-p)+d$とする.$c$と$d$の値を$p$を用いて表せ.さらに,区間$x \geqq 0$において関数$g(x)=f(x)-\{ c(x-p)+d \}$の増減を調べ,不等式
\[ f(x) \geqq c(x-p)+d \quad (x \geqq 0) \]
が成り立つことを示せ.
(3)$x \geqq 0$の範囲で,曲線$C$と接線$\ell$,および$y$軸で囲まれた図形を$F$とする.その面積$S(p)$を求めよ.
(4)$2$辺が$x$軸,$y$軸に平行な長方形$R$を考える.$R$が図形$F$を囲んでいるとき,$R$の面積の最小値$T(p)$を求めよ.さらに,$\displaystyle \lim_{p \to \infty} \frac{S(p)}{T(p)}$を求めよ.
長崎大学 国立 長崎大学 2016年 第4問
関数$f(x)=xe^x$で定まる曲線$C:y=f(x)$を考える.$p$を正の数とする.以下の問いに答えよ.

(1)$f^\prime(x)$と$f^{\prime\prime}(x)$を求めよ.また,すべての$x$について
\[ \{ (ax+b)e^x \}^\prime=f(x) \]
が成り立つような定数$a,\ b$の値を求めよ.
(2)曲線$C$上の点$\mathrm{P}(p,\ f(p))$における$C$の接線を$\ell:y=c(x-p)+d$とする.$c$と$d$の値を$p$を用いて表せ.さらに,区間$x \geqq 0$において関数$g(x)=f(x)-\{ c(x-p)+d \}$の増減を調べ,不等式
\[ f(x) \geqq c(x-p)+d \quad (x \geqq 0) \]
が成り立つことを示せ.
(3)$x \geqq 0$の範囲で,曲線$C$と接線$\ell$,および$y$軸で囲まれた図形を$F$とする.その面積$S(p)$を求めよ.
(4)$2$辺が$x$軸,$y$軸に平行な長方形$R$を考える.$R$が図形$F$を囲んでいるとき,$R$の面積の最小値$T(p)$を求めよ.さらに,$\displaystyle \lim_{p \to \infty} \frac{S(p)}{T(p)}$を求めよ.
スポンサーリンク

「正の数」とは・・・

 まだこのタグの説明は執筆されていません。