タグ「極限」の検索結果

6ページ目:全244問中51問~60問を表示)
茨城大学 国立 茨城大学 2015年 第1問
以下の各問に答えよ.ただし,対数は自然対数であり,$e$は自然対数の底である.

(1)関数$f(x)=x^2 \sqrt{1+\log x}$の$x=e^3$における微分係数$f^\prime(e^3)$を求めよ.
(2)$0 \leqq x \leqq \pi$の範囲において,$2$つの曲線$y=\sin x$と$\displaystyle y=\sin \frac{x}{2}$で囲まれた部分の面積を求めよ.
(3)極限$\displaystyle \lim_{x \to 2}\frac{1}{x^3-8} \int_2^x t^2 \, 2^{t^2} \, dt$を求めよ.
山梨大学 国立 山梨大学 2015年 第5問
点$\mathrm{O}$を原点とする座標平面上において,点$\mathrm{P}(-6,\ 0)$をとる.また,曲線
\[ x=3 \cos \theta,\quad y=3 \sin \theta \quad (0 \leqq \theta \leqq \pi) \]
を$C_1$とする.曲線$C_2,\ C_3,\ \cdots,\ C_n,\ \cdots$を次のように順次定義する.

「点$\mathrm{Q}$が曲線$C_n$上を動くとき,線分$\mathrm{PQ}$を$1:2$に内分する点$\mathrm{R}$のなす曲線を$C_{n+1}$とする.」
また, 各自然数$n$に対して,点$\mathrm{P}$を通る$x$軸と異なる直線が曲線$C_n$と接するとき,その接点を$\mathrm{A}_n$とする.次に,$\theta$を$1$つ固定し,点$\mathrm{X}_1(x_1,\ y_1)$を$x_1=3 \cos \theta$,$y_1=3 \sin \theta$となる曲線$C_1$上の点とし,点$\mathrm{X}_2,\ \mathrm{X}_3,\ \cdots,\ \mathrm{X}_n,\ \cdots$を次のように順次定義する.
「線分$\mathrm{PX}_n$を$1:2$に内分する点を$\mathrm{X}_{n+1}(x_{n+1},\ y_{n+1})$とする.」

(1)$x_2$および$y_2$を$\theta$を用いて表せ.
(2)$\angle \mathrm{A}_1 \mathrm{PO}$および$\angle \mathrm{A}_2 \mathrm{PO}$を求めよ.
(3)$x_n,\ y_n$を$\theta$を用いて表せ.
(4)極限値$\displaystyle \lim_{n \to \infty}x_n$および$\displaystyle \lim_{n \to \infty}y_n$を求めよ.
(5)直線$\mathrm{A}_n \mathrm{A}_{n+1}$,曲線$C_n$および$C_{n+1}$で囲まれた領域の面積を$a_n$とするとき,極限値$\displaystyle \sum_{n=1}^\infty a_n$を求めよ.
岩手大学 国立 岩手大学 2015年 第5問
関数$f(x)=\log (1+x)$について,次の問いに答えよ.ただし,対数は自然対数である.

(1)不定積分$\displaystyle \int f(x) \, dx$を求めよ.
(2)次の極限値を求めよ.
\[ \lim_{n \to \infty} \frac{1}{n} \left\{ f \left( \frac{1}{n} \right)+f \left( \frac{2}{n} \right)+\cdots +f \left( \frac{n}{n} \right) \right\} \]
(3)関数$g(x)=xf(x-1)-x$とするとき,$g(x)$の最小値を求めよ.
島根大学 国立 島根大学 2015年 第3問
次の問いに答えよ.ただし,$e$は自然対数の底とする.

(1)$x>0$のとき,不等式$1+x<e^x$を示せ.
(2)極限値$\displaystyle \lim_{n \to \infty} ne^{-n^2}$を求めよ.
(3)極限値$\displaystyle \lim_{n \to \infty} \int_{-n}^n (2x^2-1)e^{-x^2} \, dx$を求めよ.
長崎大学 国立 長崎大学 2015年 第3問
以下の問いに答えよ.

(1)次の関係式によって定められる数列$\{a_n\}$について,一般項$a_n$と$\displaystyle \lim_{n \to \infty}a_n$を求めよ.
\[ \left\{ \begin{array}{ll}
a_1=1 \\
a_{n+1}-(\sqrt{2}+1)a_n=1 & (n=1,\ 2,\ 3,\ \cdots)
\end{array} \right. \]
(2)次の極限値を求めよ.
\[ \lim_{n \to \infty} \left( \frac{1}{n^2+1^2}+\frac{2}{n^2+2^2}+\frac{3}{n^2+3^2}+\cdots +\frac{n}{n^2+n^2} \right) \]
(3)曲線$C:\sqrt{x}+\sqrt{y}=1$と$x$軸および$y$軸で囲まれた下図の図形を,$x$軸のまわりに$1$回転させてできる立体の体積を求めよ.
(図は省略)
長崎大学 国立 長崎大学 2015年 第3問
以下の問いに答えよ.

(1)次の関係式によって定められる数列$\{a_n\}$について,一般項$a_n$と$\displaystyle \lim_{n \to \infty}a_n$を求めよ.
\[ \left\{ \begin{array}{ll}
a_1=1 \\
a_{n+1}-(\sqrt{2}+1)a_n=1 & (n=1,\ 2,\ 3,\ \cdots)
\end{array} \right. \]
(2)次の極限値を求めよ.
\[ \lim_{n \to \infty} \left( \frac{1}{n^2+1^2}+\frac{2}{n^2+2^2}+\frac{3}{n^2+3^2}+\cdots +\frac{n}{n^2+n^2} \right) \]
(3)曲線$C:\sqrt{x}+\sqrt{y}=1$と$x$軸および$y$軸で囲まれた下図の図形を,$x$軸のまわりに$1$回転させてできる立体の体積を求めよ.
(図は省略)
山形大学 国立 山形大学 2015年 第4問
$xy$平面上に曲線$C:y=\log x$がある.曲線$C$上の異なる$2$点$\mathrm{A}(a,\ \log a)$,$\mathrm{B}(b,\ \log b)$における法線をそれぞれ$\ell,\ m$とし,$\ell$と$m$の交点を$\mathrm{P}$とする.線分$\mathrm{AP}$の長さを$d$とするとき,次の問いに答えよ.ただし,対数は自然対数である.

(1)$\ell$の方程式を求めよ.
(2)$\mathrm{P}$の座標を$a,\ b$を用いて表せ.
(3)$\displaystyle d=\sqrt{a^2+1} \left( b+\frac{\log a-\log b}{a-b} \right)$を示せ.
(4)$\mathrm{B}$が$\mathrm{A}$に限りなく近づくときの$d$の極限値を$\displaystyle r=\lim_{b \to a}d$とする.

(i) $\displaystyle r=\frac{(a^2+1)^{\frac{3}{2}}}{a}$を示せ.
(ii) $a$が$a>0$の範囲を動くとき,$r$の最小値と,そのときの$a$の値を求めよ.
長崎大学 国立 長崎大学 2015年 第3問
以下の問いに答えよ.

(1)次の関係式によって定められる数列$\{a_n\}$について,一般項$a_n$と$\displaystyle \lim_{n \to \infty}a_n$を求めよ.
\[ \left\{ \begin{array}{ll}
a_1=1 \\
a_{n+1}-(\sqrt{2}+1)a_n=1 & (n=1,\ 2,\ 3,\ \cdots)
\end{array} \right. \]
(2)次の極限値を求めよ.
\[ \lim_{n \to \infty} \left( \frac{1}{n^2+1^2}+\frac{2}{n^2+2^2}+\frac{3}{n^2+3^2}+\cdots +\frac{n}{n^2+n^2} \right) \]
(3)曲線$C:\sqrt{x}+\sqrt{y}=1$と$x$軸および$y$軸で囲まれた下図の図形を,$x$軸のまわりに$1$回転させてできる立体の体積を求めよ.
(図は省略)
電気通信大学 国立 電気通信大学 2015年 第3問
次の関数$f(x),\ g(x)$に対して,以下の問いに答えよ.ただし,$\log x$は$e$を底とする自然対数を表す.
\[ f(x)=\frac{x+1}{\sqrt{x^2+1}},\quad g(x)=\log (x+\sqrt{x^2+1}) \]

(1)極限値$\displaystyle \lim_{x \to \infty} f(x),\ \lim_{x \to -\infty} f(x)$をそれぞれ求めよ.
(2)導関数$f^\prime(x)$を求め,関数$f(x)$の増減を調べよ.さらに,$f(x)$の最大値を求めよ.
(3)次の方程式がただ$1$つの実数解を持つような定数$m$の条件を求めよ.
\[ m \sqrt{x^2+1}=x+1 \]
(4)導関数$g^\prime(x)$を求めよ.さらに,$xy$平面上において,曲線$y=f(x)$,$x$軸および$y$軸で囲まれた図形を$D$とする.図形$D$の面積$S$を求めよ.
(5)図形$D$を$x$軸のまわりに$1$回転させてできる立体の体積$V$を求めよ.
電気通信大学 国立 電気通信大学 2015年 第4問
数列$\{a_n\}$は初項が$a_1=1$,公差が正の定数$d$の等差数列とする.このとき,自然数の定数$p$を用いて
\[ b_n=a_na_{n+p} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定まる数列$\{b_n\}$について考える.ただし,$a_na_{n+p}$は$a_n$と$a_{n+p}$の積を表す.以下の問いに答えよ.

(1)数列$\{b_n\}$の階差数列$\{c_n\}$が等差数列であることを示せ.さらに,数列$\{c_n\}$の初項$c_1$と公差$D$を$d,\ p$を用いて表せ.
(2)ある定数$C$を用いて
\[ \frac{1}{b_n}=C \left( \frac{1}{a_n}-\frac{1}{a_{n+p}} \right) \quad (n=1,\ 2,\ 3,\ \cdots) \]
と表すことができる.このとき,$C$を$d,\ p$を用いて表せ.
以下の問いでは,数列$\{b_n\}$が初項から順に
\[ b_1=7,\quad b_2=40,\quad b_3=91,\ \cdots \]
となる場合を考える.
(3)定数$d,\ p$および数列$\{a_n\}$,$\{b_n\}$の一般項をそれぞれ求めよ.
(4)数列$\{b_n\}$に対して,
\[ S_n=\sum_{k=1}^n \frac{1}{b_k} \quad (n=1,\ 2,\ 3,\ \cdots) \]
とおく.極限値$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
スポンサーリンク

「極限」とは・・・

 まだこのタグの説明は執筆されていません。