タグ「楕円」の検索結果

1ページ目:全83問中1問~10問を表示)
横浜国立大学 国立 横浜国立大学 2016年 第5問
$xy$平面上に楕円$\displaystyle C:\frac{x^2}{4}+y^2=1$がある.次の問いに答えよ.

(1)点$\mathrm{P}(a,\ b)$を通る$C$の接線が$2$本あり,それらが直交するとき,$a,\ b$がみたす条件を求めよ.
(2)$C$に外接する長方形のうち,$x$座標が$1$で$y$座標が正である頂点をもつものの面積を求めよ.
静岡大学 国立 静岡大学 2016年 第2問
楕円$\displaystyle \frac{x^2}{9}+y^2=1$を$C$とする.また,座標平面上の点$\mathrm{P}(v,\ w)$を通り,単位ベクトル$\overrightarrow{u}=(\alpha,\ \beta)$を方向ベクトルにもつ直線$\ell$の媒介変数$t$による表示を
\[ x=v+\alpha t,\quad y=w+\beta t \]
とする.直線$\ell$は$t=t_1,\ t_2$において楕円$C$とそれぞれ共有点$\mathrm{Q}$,$\mathrm{R}$をもつとする.ただし,$\alpha>0$,$t_1 \leqq t_2$とする.このとき,次の各問に答えよ.

(1)$t_1+t_2$と$t_1t_2$を$v,\ w,\ \alpha,\ \beta$を用いてそれぞれ表せ.
(2)$|\overrightarrow{\mathrm{PQ|}} \cdot |\overrightarrow{\mathrm{PR|}}$を$v,\ w,\ \alpha,\ \beta$を用いて表せ.
(3)$\alpha=\beta$のとき,$\displaystyle |\overrightarrow{\mathrm{QR|}}=\frac{6}{5}$となる点$\mathrm{P}$の軌跡を座標平面上に図示せよ.
福島大学 国立 福島大学 2016年 第4問
二つの楕円
\[ x^2+3y^2=4,\quad 3x^2+y^2=4 \]
で囲まれた図形のうち,下の図の網かけ部分として示された,原点を含む部分を$D$とする.
(図は省略)

(1)$D$を$x$軸のまわりに回転してできる図形の体積を求めなさい.
(2)$D$の面積を求めなさい.
九州工業大学 国立 九州工業大学 2016年 第3問
$a<0$,$b$を実数とする.楕円$C:x^2+4y^2=4$と直線$\ell:y=ax+b$が異なる$2$個の共有点$\mathrm{P}(x_1,\ y_1)$,$\mathrm{Q}(x_2,\ y_2) (x_1<x_2)$を持つとし,$\ell$に平行な直線$m$が第$1$象限の点$\mathrm{A}$において$C$と接しているとする.次に答えよ.

(1)$b$の値の範囲を$a$を用いて表せ.
(2)直線$m$の方程式を$a$を用いて表せ.
(3)$x_2-x_1$を$a,\ b$を用いて表せ.
(4)三角形$\mathrm{APQ}$の面積$S$を$a,\ b$を用いて表せ.
(5)$b$が$(1)$で求めた範囲を動くとき,$(4)$で求めた$S$の最大値を求めよ.
長崎大学 国立 長崎大学 2016年 第4問
楕円$\displaystyle x^2+\frac{y^2}{a^2}=1 (a>0)$と$y$軸の交点を$\mathrm{A}(0,\ a)$,$\mathrm{B}(0,\ -a)$とする.$\theta$が$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,点$\mathrm{P}(\cos \theta,\ a \sin \theta)$はこの楕円上を動く.以下の問いに答えよ.

(1)線分$\mathrm{AP}$の長さを$l$とする.$\displaystyle X=\sin \theta \left( -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2} \right)$のとき,$Y=l^2$となる関数を$Y=f(X)$とする.$f(X)$を$X$の式で表せ.
(2)$0<a<1$の場合.
$(1)$の関数$f(X)$の最大値を$a$を用いて表し,そのときの$X$の値を求めよ.
(3)$a=2$の場合.
$(1)$の関数$f(X)$の値が最大となるときの点$\mathrm{P}$を$\mathrm{P}_1$とする.$f(X)$の最大値と$\mathrm{P}_1$の座標を求めよ.また,点$\mathrm{A}(0,\ 2)$を中心とし点$\mathrm{P}_1$を通る円を,$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
秋田大学 国立 秋田大学 2016年 第3問
$b>0$,$a=2 \sqrt{3}b$とし,原点を$\mathrm{O}$とする座標平面上の楕円$\displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$を$E$とする.楕円$E$上の点$\mathrm{P}(x,\ y)$の媒介変数表示は$x=a \cos \theta$,$y=b \sin \theta (0 \leqq \theta<2\pi)$で与えられる.次の問いに答えよ.

(1)点$\mathrm{P}$で楕円$E$と共通の接線をもつ円を考える.このような円のうち,不等式$\displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2} \geqq 1$の表す領域内にある円を$C$とする.円$C$の半径を$r(\theta)$とするとき,$C$の中心を$\theta$と$r(\theta)$を用いて表せ.
(2)$2d=11b$とし,$4$つの頂点が$(d,\ d)$,$(-d,\ d)$,$(-d,\ -d)$,$(d,\ -d)$である正方形$F$を考える.点$\mathrm{P}$が楕円$E$上を動くとき,$(1)$の円$C$の中心は正方形$F$の周上を動くとする.このとき,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$に対して,$C$の半径$r(\theta)$を求めよ.
(3)$(2)$の$r(\theta)$の$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$における最大値は$\displaystyle \frac{5 \sqrt{5}}{2}b$であることを示せ.
愛媛大学 国立 愛媛大学 2016年 第1問
次の問いに答えよ.

(1)$a,\ b$を正の実数とする.楕円$\displaystyle \frac{x^2}{4}+y^2=1$を$x$軸方向に$a$,$y$軸方向に$b$だけ平行移動して得られる楕円が$y$軸と直線$y=x$に接するような$a,\ b$を求めよ.
(2)$1$辺の長さが$\sqrt{n}$の正$n$角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_n$における三角形$\mathrm{A}_1 \mathrm{A}_2 \mathrm{A}_3$の面積を$S_n$とする.このとき$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
(3)$a,\ b$は実数で$a>0$を満たすとする.放物線$\displaystyle y=\frac{1}{2a^2}x^2$と曲線$y=\log x+b$がただ$1$つの共有点$\mathrm{P}$をもつとき,$\mathrm{P}$の座標および$b$を$a$を用いて表せ.

(4)$1 \leqq x \leqq 2$とする.関数$\displaystyle f(x)=\int_1^2 \frac{|t-x|}{t^2} \, dt$を最小にする$x$の値を求めよ.
愛媛大学 国立 愛媛大学 2016年 第2問
次の問いに答えよ.

(1)$a,\ b$を正の実数とする.楕円$\displaystyle \frac{x^2}{4}+y^2=1$を$x$軸方向に$a$,$y$軸方向に$b$だけ平行移動して得られる楕円が$y$軸と直線$y=x$に接するような$a,\ b$を求めよ.
(2)$1$辺の長さが$\sqrt{n}$の正$n$角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_n$における三角形$\mathrm{A}_1 \mathrm{A}_2 \mathrm{A}_3$の面積を$S_n$とする.このとき$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
(3)$a,\ b$は実数で$a>0$を満たすとする.放物線$\displaystyle y=\frac{1}{2a^2}x^2$と曲線$y=\log x+b$がただ$1$つの共有点$\mathrm{P}$をもつとき,$\mathrm{P}$の座標および$b$を$a$を用いて表せ.

(4)$1 \leqq x \leqq 2$とする.関数$\displaystyle f(x)=\int_1^2 \frac{|t-x|}{t^2} \, dt$を最小にする$x$の値を求めよ.
学習院大学 私立 学習院大学 2016年 第2問
平面上の点$\mathrm{P}(s,\ t)$が楕円$\displaystyle C:\frac{x^2}{8}+\frac{y^2}{2}=1$上を動くとき,$\displaystyle \frac{t-2}{s-4}$の最大値を求めよ.また,最大値を与える$s,\ t$を求めよ.
愛知県立大学 公立 愛知県立大学 2016年 第4問
座標平面上に楕円$\displaystyle \frac{x^2}{4}+y^2=1$と放物線$y^2=x-t$があり,$t>0$とする.この楕円と放物線の共有点が$2$個であるとき,以下の問いに答えよ.

(1)$t$の条件を求めよ.
(2)$2$個の共有点の$x$座標を$t$を用いて表せ.
(3)$2$個の共有点における放物線の接線が垂直に交わるように$t$の値を定めよ.
スポンサーリンク

「楕円」とは・・・

 まだこのタグの説明は執筆されていません。