タグ「桁数」の検索結果

2ページ目:全195問中11問~20問を表示)
富山大学 国立 富山大学 2016年 第3問
$\displaystyle \sum_{n=0}^{100} 3^n$の桁数を求めよ.ただし,$\log_{10}3=0.4771$とする.
星薬科大学 私立 星薬科大学 2016年 第2問
次の問に答えよ.

(1)$a,\ b,\ c$をそれぞれ$1$桁の数として,$3$桁の数を$abc$と表記するとき,$7$進法で表すと$3$桁の数$abc_{(7)}$になり,$5$進法で表すと$3$桁の数$bca_{(5)}$になる数を$10$進法で表すと$[$18$][$19$]$である.
(2)$\displaystyle \frac{123}{343}$を$7$進法の小数で表すと$[$20$]. [$21$][$22$][$23$]_{(7)}$である.
学習院大学 私立 学習院大学 2016年 第1問
次の問いに答えよ.

(1)$n$を自然数とするとき,和
\[ \sum_{k=2n}^{3n} (3k^2+5k-1) \]
を$n$の整式として表せ.ただし,答えは$n$について降べきの順に整理すること.
(2)${12}^{40}$は何桁の数であるか答えよ.ただし,整数は$10$進法で表すものとし,$\log_{10}2=0.301$,$\log_{10}3=0.477$とする.
東北学院大学 私立 東北学院大学 2016年 第1問
次の各問題の$[ ]$に適する答えを記入せよ.

(1)$\sin \theta+\cos \theta=k$とするとき$\displaystyle \frac{\cos \theta}{\sin^2 \theta}+\frac{\sin \theta}{\cos^2 \theta}$を$k$を用いて表すと$[ア]$である.
(2)$2^{2016} \cdot 3^{2020}$は$[イ]$桁の数である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
(3)ベクトル$\overrightarrow{a}=(1,\ 1,\ 3)$,$\overrightarrow{b}=(2,\ 0,\ -3)$の両方に垂直で,大きさが$1$のベクトルを成分表示すると$[ウ]$となる.
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
次の問いに答えよ.

(1)整式$P(x)$は実数を係数にもつ$x$の$3$次式であり,$x^3$の係数は$1$である.$P(x)$を$x-7$で割ると$8$余り,$x-9$で割ると$12$余る.方程式$P(x)=0$は$a+bi$を解に持つ.$a,\ b$は$1$桁の自然数であり,$i$は虚数単位とする.
ただし$a,\ b$の組み合わせは,$2a+b$が連続する$2$つの整数の積の値と等しくなるもののうち,$a-b$が最大となるものとする.このとき,

(i) 整式$P(x)$を$(x-7)(x-9)$で割ると,余りは$[$1$]x-[$2$]$である.
(ii) $a=[$3$]$,$b=[$4$]$であり,方程式$P(x)=0$の実数解は$[$5$]$である.

(2)$xy$平面上に曲線$C_1:y=-x^2-x+8$がある.$C_1$上の動点$\mathrm{A}$を点$(1,\ 2)$に関して対称移動した点$\mathrm{B}$の軌跡を$C_2$とする.
$C_1$と$C_2$の$2$つの交点$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$\alpha,\ \beta (\alpha<\beta)$とし,また,$C_1,\ C_2$と直線$x=k$との交点をそれぞれ$\mathrm{R}$,$\mathrm{S}$とする.ただし,$k$は$\alpha<k<\beta$を満たす実数とする.このとき,

(i) $C_2$の方程式は$y=x^2-[$6$]x+[$7$]$である.

(ii) 三角形$\mathrm{QRS}$の面積は$\displaystyle k=\frac{[$8$]}{[$9$]}$で最大となる.


(3)$xy$平面上に,原点$\mathrm{O}$を中心とする単位円$C$と,$y$軸の正の部分を始線として点$\mathrm{O}$を中心に回転する$2$つの動径$L_1,\ L_2$がある.円$C$と$L_1,\ L_2$との交点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.動径$L_1,\ L_2$の表す角をそれぞれ$\theta_1,\ \theta_2$とおき,$\theta_1=2\pi t,\ \theta_2=-\pi t$とする.ただし$t$は,$t \geqq 0$を満たす実数である.このとき,

(i) 点$\mathrm{P}$と点$\mathrm{Q}$が一致する$t$のうち,$t=0$を除く最小の$t$の値は$\displaystyle \frac{[$10$]}{[$11$]}$である.

(ii) 点$\mathrm{P}$の$y$座標と点$\mathrm{Q}$の$y$座標の和の最小値は$\displaystyle \frac{[$12$][$13$]}{[$14$]}$である.


(4)直角三角形$\mathrm{AOB}$($\angle \mathrm{AOB}={90}^\circ$)に内接する半径$r$の円の中心を$\mathrm{P}$とする.辺$\mathrm{AB}$と円の接点を$\mathrm{Q}$とし,線分$\mathrm{AQ}$の長さを$a$,線分$\mathrm{BQ}$の長さを$b$とする.三角形$\mathrm{AOB}$に対して,自然数$l,\ m,\ n (n<m<l)$は,$l \overrightarrow{\mathrm{OP}}+m \overrightarrow{\mathrm{AP}}+n \overrightarrow{\mathrm{BP}}=\overrightarrow{\mathrm{0}}$を満たす.このとき,

(i) 三角形$\mathrm{AOB}$の$3$辺の長さの合計は$[$15$]a+[$16$]b+[$17$]r$である.

(ii) $l=17$のとき,$m=[$18$][$19$]$,$n=[$20$]$であり,$\displaystyle \frac{a}{b}=\frac{[$21$]}{[$22$][$23$]}$である.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2016年 第6問
$7$個の数字$1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7$を重複なく使ってできる$4$桁の数について,次の設問に答えよ.

(1)$4$桁の数はすべてで何個あるか.
(2)そのうち,$5500$よりも大きい数は何個あるか.
(3)$4$桁の数を小さい順に並べたとき,$150$番目の数を求めよ.
自治医科大学 私立 自治医科大学 2016年 第16問
数列$\{a_n\}$は,初項が$1$,公比$2$の等比数列であるとする.$\displaystyle S=\sum_{n=1}^{101}a_n$としたとき,$S+1$は,$(30+b)$桁の整数になる.$b$の値を求めよ.ただし,$\log_{10}2=0.3010$とする.
自治医科大学 私立 自治医科大学 2016年 第18問
$7$個の数字$0,\ 1,\ 2,\ 3,\ 4,\ 5,\ 6$を使用してできる全ての$4$桁の整数の個数を$N$,その$4$桁の整数のうち,両端が奇数であるものの個数を$M$とする.$\displaystyle \frac{N}{M}$の値を求めよ.ただし,同じ数字は$2$度以上使わないものとする.
慶應義塾大学 私立 慶應義塾大学 2016年 第2問
以下の条件で定められる数列$\{a_n\}$がある.
\[ a_1=\frac{1}{10},\quad a_{n+1}=\frac{1}{100}a_n+\frac{1}{10} \quad (n=1,\ 2,\ 3,\ \cdots) \]

(1)$\{a_n\}$の階差数列$\{b_n\}$を$b_n=a_{n+1}-a_n (n=1,\ 2,\ 3,\ \cdots)$で定める.$\{b_n\}$は等比数列で,初項を$\displaystyle \frac{1}{{10}^p}$,公比を$\displaystyle \frac{1}{{10}^q}$とおくと,$p=[$13$]$,$q=[$14$]$となる.ゆえに,$\{b_n\}$の第$n$項を
\[ b_n=\frac{1}{{10}^{rn+s}} \quad (n=1,\ 2,\ 3,\ \cdots) \]
とおくと,$r=[$15$]$,$s=[$16$]$となる.さらに,$\{a_n\}$の第$n$項は,
\[ a_n=a_1+\sum_{k=[$17$]}^{n+[$18$][$19$]} b_k=\frac{\displaystyle\frac{1}{{10}^t} \left( 1-\frac{1}{{10}^{un}} \right)}{1-\displaystyle\frac{1}{{10}^v}} \quad (n=2,\ 3,\ 4,\ \cdots) \]
と求められる.ここで,$t=[$20$]$,$u=[$21$]$,$v=[$22$]$である.
(2)$\displaystyle S_n=\sum_{k=1}^n \frac{1}{{10}^{2k} a_k a_{k+1}} \quad (n=1,\ 2,\ 3,\ \cdots)$とおく.関係式
\[ \frac{b_k}{a_k a_{k+1}}=\frac{[$23$][$24$]}{a_k}+\frac{[$25$][$26$]}{a_{k+1}} \quad (k=1,\ 2,\ 3,\ \cdots) \]
を用いて計算すると,
\[ S_n=\frac{{10}^w \left( 1-\displaystyle\frac{1}{{10}^{xn}} \right)}{1-\displaystyle\frac{1}{{10}^{yn+z}}} \]
となる.ここで,$w=[$27$]$,$x=[$28$]$,$y=[$29$]$,$z=[$30$]$である.
(3)$({100}^{n+1}-1)S_n$は$[$31$]n+[$32$][$33$]$桁の整数になる.
京都産業大学 私立 京都産業大学 2016年 第2問
以下の$[ ]$にあてはまる式または数値を記入せよ.

$n$を$3$以上の整数とする.整数$x$を$2$進法で表す.上から$k+1$桁目($1 \leqq k \leqq n$)の数を$a_k$とし,$x=1a_1a_2 \cdots {a_n}_{(2)}$と表す.$a_1,\ a_2,\ \cdots,\ a_n$は$0$か$1$である.この形の$x$は$[ア]$個ある.
このような$x$の中で値が最も小さいものは$10 \cdots 0_{(2)} (a_1=a_2=\cdots =a_n=0)$であり,$n$で表すと$2^n$である.また,最も大きいものを$n$で表すと$[イ]$である.$x=110 \cdots 0_{(2)} (a_1=1,\ a_2=\cdots =a_n=0)$のとき,$x$を$n$で表すと$[ウ]$である.
このような$x=1 a_1a_2 \cdots {a_n}_{(2)}$に対し,$x^\prime=1 a_2a_3 \cdots a_n{a_1}_{(2)}$とする.$x=x^\prime$となるようなすべての$x$を$n$で表すと$[エ]$である.
$x=110 \cdots 00_{(2)}$のとき,$x-x^\prime$を$n$で表すと$[オ]$である.
$x>x^\prime$となるような$x$は$[カ]$個ある.$x-x^\prime=1$となる$x$を$n$で表すと$[キ]$である.
スポンサーリンク

「桁数」とは・・・

 まだこのタグの説明は執筆されていません。