タグ「根号」の検索結果

9ページ目:全1904問中81問~90問を表示)
愛媛大学 国立 愛媛大学 2016年 第1問
次の問いに答えよ.

(1)$a,\ b$を正の実数とする.楕円$\displaystyle \frac{x^2}{4}+y^2=1$を$x$軸方向に$a$,$y$軸方向に$b$だけ平行移動して得られる楕円が$y$軸と直線$y=x$に接するような$a,\ b$を求めよ.
(2)$1$辺の長さが$\sqrt{n}$の正$n$角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_n$における三角形$\mathrm{A}_1 \mathrm{A}_2 \mathrm{A}_3$の面積を$S_n$とする.このとき$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
(3)$a,\ b$は実数で$a>0$を満たすとする.放物線$\displaystyle y=\frac{1}{2a^2}x^2$と曲線$y=\log x+b$がただ$1$つの共有点$\mathrm{P}$をもつとき,$\mathrm{P}$の座標および$b$を$a$を用いて表せ.

(4)$1 \leqq x \leqq 2$とする.関数$\displaystyle f(x)=\int_1^2 \frac{|t-x|}{t^2} \, dt$を最小にする$x$の値を求めよ.
長崎大学 国立 長崎大学 2016年 第1問
半径$1$の円に内接する正十二角形$D$がある.その面積を$S$とする.$D$の各辺の中点を順に結んで正十二角形$D_1$をつくる.さらに,$D_1$の各辺の中点を結んで正十二角形$D_2$をつくる.このように,$D_{n−1}$の各辺の中点を順に結んで正十二角形$D_n$をつくる($n \geqq 2$).$D_n$の面積を$S_n$とする.以下の問いに答えよ.

(1)$S$と$S_1$を求めよ.
(2)$S_n$を$n$の式で表せ($n \geqq 1$).
(3)$\displaystyle S_n \leqq \frac{1}{2}S$となる最小の整数$n$を求めよ.ただし,
\[ 1.89<\log_2(2+\sqrt{3})<1.9 \]
である.
長崎大学 国立 長崎大学 2016年 第4問
区間$-1 \leqq x \leqq 1$において,$2$つの関数$f(x)=x+\sqrt{1-x^2}$,$g(x)=x-\sqrt{1-x^2}$を考える.曲線$C_1:y=f(x)$と曲線$C_2:y=g(x)$で囲まれた図形を$D$とする.以下の問いに答えよ.

(1)関数$f(x)$の増減を調べ,その最大値と最小値を求めよ.
(2)曲線$C_1$は曲線$C_2$と原点に関して対称であることを示せ.
(3)区間$-1 \leqq x \leqq 1$において,$f(x)$と$-g(x)$の値の大小関係を調べよ.また,$g(x) \geqq 0$が成り立つような$x$の範囲を求めよ.
(4)図形$D$の$x \geqq 0$の部分を$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
愛媛大学 国立 愛媛大学 2016年 第3問
$z_0$を虚数単位$i$と異なる複素数とする.複素数$z_n$を
\[ z_n=i+\frac{\sqrt{2}(z_{n-1}-i)(1+i)}{2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.

(1)すべての自然数$n$に対し$z_n \neq i$であることを示せ.
(2)$\displaystyle \frac{z_n-i}{z_{n-1}-i}$の絶対値$r$と偏角$\theta$を求めよ.ただし,$\theta$の範囲は$0 \leqq \theta<2\pi$とする.
(3)$z_m=z_0$となる最小の自然数$m$を求めよ.
(4)複素数平面上において$z_n$の表す点を$\mathrm{P}_n$とする.$(3)$で求めた$m$に対し$m$本の線分$\mathrm{P}_0 \mathrm{P}_1$,$\mathrm{P}_1 \mathrm{P}_2$,$\cdots$,$\mathrm{P}_{m-1} \mathrm{P}_m$で囲まれる図形の面積を$S$とする.$z_0=1-i$のとき$S$の値を求めよ.
愛媛大学 国立 愛媛大学 2016年 第2問
次の問いに答えよ.

(1)$a,\ b$を正の実数とする.楕円$\displaystyle \frac{x^2}{4}+y^2=1$を$x$軸方向に$a$,$y$軸方向に$b$だけ平行移動して得られる楕円が$y$軸と直線$y=x$に接するような$a,\ b$を求めよ.
(2)$1$辺の長さが$\sqrt{n}$の正$n$角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_n$における三角形$\mathrm{A}_1 \mathrm{A}_2 \mathrm{A}_3$の面積を$S_n$とする.このとき$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
(3)$a,\ b$は実数で$a>0$を満たすとする.放物線$\displaystyle y=\frac{1}{2a^2}x^2$と曲線$y=\log x+b$がただ$1$つの共有点$\mathrm{P}$をもつとき,$\mathrm{P}$の座標および$b$を$a$を用いて表せ.

(4)$1 \leqq x \leqq 2$とする.関数$\displaystyle f(x)=\int_1^2 \frac{|t-x|}{t^2} \, dt$を最小にする$x$の値を求めよ.
愛媛大学 国立 愛媛大学 2016年 第4問
$z_0$を虚数単位$i$と異なる複素数とする.複素数$z_n$を
\[ z_n=i+\frac{\sqrt{2}(z_{n-1}-i)(1+i)}{2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.

(1)すべての自然数$n$に対し$z_n \neq i$であることを示せ.
(2)$\displaystyle \frac{z_n-i}{z_{n-1}-i}$の絶対値$r$と偏角$\theta$を求めよ.ただし,$\theta$の範囲は$0 \leqq \theta<2\pi$とする.
(3)$z_m=z_0$となる最小の自然数$m$を求めよ.
(4)複素数平面上において$z_n$の表す点を$\mathrm{P}_n$とする.$(3)$で求めた$m$に対し$m$本の線分$\mathrm{P}_0 \mathrm{P}_1$,$\mathrm{P}_1 \mathrm{P}_2$,$\cdots$,$\mathrm{P}_{m-1} \mathrm{P}_m$で囲まれる図形の面積を$S$とする.$z_0=1-i$のとき$S$の値を求めよ.
長崎大学 国立 長崎大学 2016年 第2問
$1$辺の長さが$2$の立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$がある.下の図$1$のように,$2$辺$\mathrm{BC}$,$\mathrm{CD}$上に,$\mathrm{BS}=\mathrm{CT}=x (0 \leqq x \leqq 2)$を満たす点$\mathrm{S}$,$\mathrm{T}$をとる.このとき,三角形$\mathrm{EST}$の面積の最大値と最小値を求めたい.以下の問いに答えよ.
(図は省略)

(1)上の図$2$を参考にして,三角形$\mathrm{OPQ}$において$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$,$\overrightarrow{\mathrm{OQ}}=\overrightarrow{q}$とおくとき,三角形$\mathrm{OPQ}$の面積は
\[ \frac{1}{2} \sqrt{|\overrightarrow{p|}^2 |\overrightarrow{q|}^2-(\overrightarrow{p} \cdot \overrightarrow{q})^2} \]
と表されることを証明せよ.
(2)$\overrightarrow{\mathrm{EF}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{EH}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{EA}}=\overrightarrow{c}$とおく.立方体の$1$辺の長さが$2$であることに注意して,$\overrightarrow{\mathrm{ES}}$,$\overrightarrow{\mathrm{ET}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$および$x$を用いて表せ.また,$|\overrightarrow{\mathrm{ES|}}^2$,$|\overrightarrow{\mathrm{ET|}}^2$を,それぞれ$x$の式として表せ.さらに,$\overrightarrow{\mathrm{ES}}$と$\overrightarrow{\mathrm{ET}}$の内積$\overrightarrow{\mathrm{ES}} \cdot \overrightarrow{\mathrm{ET}}$は,$x$によらない一定の値になることを示せ.
(3)上の$(1)$を利用して三角形$\mathrm{EST}$の面積$f(x)$を求めよ.
(4)$0 \leqq x \leqq 2$の範囲で,$f(x)$の最大値と最小値を求めよ.また,そのときの$x$の値も答えよ.
長崎大学 国立 長崎大学 2016年 第2問
$1$辺の長さが$2$の立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$がある.下の図$1$にように,$2$辺$\mathrm{BC}$,$\mathrm{CD}$上に,$\mathrm{BS}=\mathrm{CT}=x (0 \leqq x \leqq 2)$を満たす点$\mathrm{S}$,$\mathrm{T}$をとる.このとき,三角形$\mathrm{EST}$の面積の最大値と最小値を求めたい.以下の問いに答えよ.
(図は省略)

(1)上の図$2$を参考にして,三角形$\mathrm{OPQ}$において$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$,$\overrightarrow{\mathrm{OQ}}=\overrightarrow{q}$とおくとき,三角形$\mathrm{OPQ}$の面積は
\[ \frac{1}{2} \sqrt{|\overrightarrow{p|}^2 |\overrightarrow{q|}^2-(\overrightarrow{p} \cdot \overrightarrow{q})^2} \]
と表されることを証明せよ.
(2)$\overrightarrow{\mathrm{EF}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{EH}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{EA}}=\overrightarrow{c}$とおく.立方体の$1$辺の長さが$2$であることに注意して,$\overrightarrow{\mathrm{ES}}$,$\overrightarrow{\mathrm{ET}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$および$x$を用いて表せ.また,$|\overrightarrow{\mathrm{ES|}}^2$,$|\overrightarrow{\mathrm{ET|}}^2$を,それぞれ$x$の式として表せ.さらに,$\overrightarrow{\mathrm{ES}}$と$\overrightarrow{\mathrm{ET}}$の内積$\overrightarrow{\mathrm{ES}} \cdot \overrightarrow{\mathrm{ET}}$は,$x$によらない一定の値になることを示せ.
(3)上の$(1)$を利用して三角形$\mathrm{EST}$の面積$f(x)$を求めよ.
(4)$0 \leqq x \leqq 2$の範囲で,$f(x)$の最大値と最小値を求めよ.また,そのときの$x$の値も答えよ.
岩手大学 国立 岩手大学 2016年 第1問
次の問いに答えよ.

(1)$2$つのベクトル$\overrightarrow{a}=(1,\ -1,\ -1)$,$\overrightarrow{b}=(2,\ 1,\ -2)$の両方に垂直な単位ベクトルを求めよ.
(2)$1 \leqq x \leqq 27$のとき,関数$y=(\log_3 x)^2-\log_3 x^2-3$の最大値と最小値を求めよ.また,そのときの$x$の値を求めよ.
(3)複素数平面上で,点$\mathrm{P}(1-\sqrt{3}i)$を中心とする円に内接する正三角形がある.この正三角形の頂点の$1$つが点$\mathrm{A}(2)$であるとき,残りの$2$つの頂点を表す複素数を求めよ.ただし,$i$は虚数単位とする.
岩手大学 国立 岩手大学 2016年 第3問
$a,\ b$を定数とし,関数$f(x)=\sin 2x+a \cos x+b$とする.$\displaystyle f \left( \frac{\pi}{6} \right)=\sqrt{3}$とするとき,次の問いに答えよ.

(1)$b$を$a$を用いて表せ.
(2)曲線$y=f(x)$上の点$\displaystyle \mathrm{P} \left( \frac{\pi}{2},\ f \left( \frac{\pi}{2} \right) \right)$における法線が,点$\displaystyle \mathrm{Q} \left( \frac{\pi}{2}+2 \sqrt{3},\ 0 \right)$を通るとき,$a,\ b$の組をすべて求めよ.
(3)$(2)$で求めた$a,\ b$で定められる$f(x)$のうち,$\displaystyle x=\frac{\pi}{6}$で極値をとるものについて考える.このとき$0 \leqq x \leqq 2\pi$の範囲において,$f(x)$のすべての極値を求めよ.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。