タグ「根号」の検索結果

59ページ目:全1904問中581問~590問を表示)
北九州市立大学 公立 北九州市立大学 2015年 第1問
以下の問いの空欄$[ア]$~$[ケ]$に入れるのに適する数値,式を解答箇所に記せ.証明や説明は必要としない.

(1)$x$および$y$は実数とする.点$(x,\ y)$が$x^2+2y^2=2$を満たすとき,$\displaystyle \frac{1}{2}x+y^2$の最大値は$[ア]$,最小値は$[イ]$となる.
(2)半径$r$の円に内接する正$12$角形を考える.この正$12$角形の$1$辺の長さを$1$とすると,円の半径$r$の値は$[ウ]$,正$12$角形の面積は$[エ]$である.
(3)大きさの異なる$3$種類の無地のタイルがある.タイルは長方形で,縦と横の長さがそれぞれ$2 \, \mathrm{cm} \times 9.5 \, \mathrm{cm}$,$3 \, \mathrm{cm} \times 9.5 \, \mathrm{cm}$,$5 \, \mathrm{cm} \times 9.5 \, \mathrm{cm}$である.$15 \, \mathrm{cm} \times 9.5 \, \mathrm{cm}$の長方形の壁にタイルを隙間なく,はみ出ないように貼り付けるとき,$[オ]$通りの貼り付け方が存在する.必ずしも$3$種類すべてのタイルを使わなくてもよいものとする.また,タイルは切断できないものとする.
(4)$\displaystyle x=\frac{2}{\sqrt{5}+1},\ y=\frac{2}{\sqrt{5}-1}$のとき,$x^3+x^2y+xy^2+y^3$の値は$[カ]$,$x^6+y^6$の値は$[キ]$となる.
(5)赤玉が$3$個,白玉が$5$個入っている袋から同時に$4$個の玉を取り出す.このとき,取り出された玉がすべて白玉となる確率は$[ク]$である.少なくとも$2$個の赤玉が取り出される確率は$[ケ]$である.
北九州市立大学 公立 北九州市立大学 2015年 第3問
半径$1$の円を底面とする高さ$2$の円柱がある.下図のように,ひとつの底面を$xy$平面にとり,その中心を原点$\mathrm{O}$にとる.点$\displaystyle \mathrm{A} \left( -\frac{1}{\sqrt{2}},\ 0,\ 0 \right)$および点$\displaystyle \mathrm{B} \left( 0,\ 0,\ \frac{1}{\sqrt{2}} \right)$を通り,$xy$平面と${45}^\circ$の角をなす平面で,円柱を$2$つの立体に分ける.以下の問いに答えよ.

(1)平面$x=a$(ただし,$\displaystyle -\frac{1}{\sqrt{2}} \leqq a \leqq 1$)で小さい方の立体を切ったときの切り口(長方形$\mathrm{PQRS}$)の面積$S(a)$を求めよ.
(2)小さい方の立体の体積$V$を求めよ.
(図は省略)
尾道市立大学 公立 尾道市立大学 2015年 第1問
次の問いに答えなさい.

(1)$x,\ y$の多項式$x^3y+x^2y^2+x^2y+x^2+xy^2+xy+x+y$を因数分解しなさい.
(2)$\displaystyle x=\frac{1}{\sqrt{7}+\sqrt{6}},\ y=\frac{1}{\sqrt{7}-\sqrt{6}}$のとき$(1)$の多項式$x^3y+x^2y^2+x^2y+x^2+xy^2+xy+x+y$の値を求めなさい.
(3)$a<0$とし,$2$次方程式$ax^2-(a^2+a+1)x-2a-4=0$の解を$\alpha,\ \beta (\alpha<\beta)$とする.このとき$2$つの解$\alpha,\ \beta$が$-2<\alpha<-1$かつ$-1<\beta<0$を満たすような$a$の範囲を求めなさい.
高崎経済大学 公立 高崎経済大学 2015年 第4問
連立不等式
\[ x^2+y^2 \leqq 100,\quad y \geqq -\sqrt{3}x+10 \sqrt{3} \]
の表す領域を$D$とする.次の各問に答えよ.

(1)領域$D$を図示せよ.
(2)領域$D$の面積を求めよ.
(3)点$(x,\ y)$が領域$D$を動くとき,$x+y$の最大値と最小値を求めよ.
大阪府立大学 公立 大阪府立大学 2015年 第2問
次の問いに答えよ.

(1)$x \geqq 0$のとき,$\displaystyle x-\frac{x^2}{2} \leqq \log (1+x) \leqq x$が成り立つことを示せ.
(2)自然数$n$に対して,
\[ S_n=\log (n \sqrt{n}+1)+\log (n \sqrt{n}+\sqrt{2})+\cdots +\log (n \sqrt{n}+\sqrt{n})-n \log (n \sqrt{n}) \]
と定めるとき,極限値$\displaystyle \lim_{n \to \infty} S_n$を求めよ.
東京大学 国立 東京大学 2014年 第6問
座標平面の原点を$\mathrm{O}$で表す.線分$y=\sqrt{3}x (0 \leqq x \leqq 2)$上の点$\mathrm{P}$と,線分$y=-\sqrt{3}x (-2 \leqq x \leqq 0)$上の点$\mathrm{Q}$が,線分$\mathrm{OP}$と線分$\mathrm{OQ}$の長さの和が$6$となるように動く.このとき,線分$\mathrm{PQ}$の通過する領域を$D$とする.

(1)$s$を$0 \leqq s \leqq 2$をみたす実数とするとき,点$(s,\ t)$が$D$に入るような$t$の範囲を求めよ.
(2)$D$を図示せよ.
東京大学 国立 東京大学 2014年 第1問
以下の問いに答えよ.

(1)$t$を実数の定数とする.実数全体を定義域とする関数$f(x)$を
\[ f(x)=-2x^2+8tx-12x+t^3-17t^2+39t-18 \]
と定める.このとき,関数$f(x)$の最大値を$t$を用いて表せ.
(2)$(1)$の「関数$f(x)$の最大値」を$g(t)$とする.$t$が$\displaystyle t \geqq -\frac{1}{\sqrt{2}}$の範囲を動くとき,$g(t)$の最小値を求めよ.
東京大学 国立 東京大学 2014年 第3問
座標平面の原点を$\mathrm{O}$で表す.線分$y=\sqrt{3}x (0 \leqq x \leqq 2)$上の点$\mathrm{P}$と,線分$y=-\sqrt{3}x (-3 \leqq x \leqq 0)$上の点$\mathrm{Q}$が,線分$\mathrm{OP}$と線分$\mathrm{OQ}$の長さの和が$6$となるように動く.このとき,線分$\mathrm{PQ}$の通過する領域を$D$とする.

(1)$s$を$-3 \leqq s \leqq 2$をみたす実数とするとき,点$(s,\ t)$が$D$に入るような$t$の範囲を求めよ.
(2)$D$を図示せよ.
横浜国立大学 国立 横浜国立大学 2014年 第1問
次の問いに答えよ.

(1)定積分$\displaystyle \int_0^{\sqrt{\frac{\pi}{2}}} x^3 \cos (x^2) \, dx$を求めよ.
(2)$0<x<1$のとき,不等式
\[ \left( \frac{x+1}{2} \right)^{x+1}<x^x \]
が成り立つことを示せ.
埼玉大学 国立 埼玉大学 2014年 第4問
$xy$平面上で,媒介変数$\theta$により
\[ x=\sqrt{\cos 2\theta} \cos \theta,\quad y=\sqrt{\cos 2\theta} \sin \theta \quad \left( -\frac{\pi}{4} \leqq \theta \leqq \frac{\pi}{4} \right) \]
と表される曲線を$C$とする.

(1)曲線$C$上で$y$座標が最大となる点の座標を$(p,\ q)$とする.$(p,\ q)$を求めよ.
(2)曲線$C$で囲まれた図形のうち$x \geqq p$の部分の面積を求めよ.ただし,$p$は$(1)$で求めた$x$座標である.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。