タグ「根号」の検索結果

35ページ目:全1904問中341問~350問を表示)
山形大学 国立 山形大学 2015年 第1問
次の各問に答えよ.

(1)$\triangle \mathrm{ABC}$において,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$で表し,$\angle \mathrm{A}$の大きさを$A$で表すことにする.この三角形において
\[ \frac{a+b}{6}=\frac{b+c}{5}=\frac{c+a}{7} \]
であり,面積が$3 \sqrt{15}$のとき,$\cos A$と$a$を求めよ.
(2)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が,$S_n=2a_n-2^n$で与えられるとき,次の問に答えよ.

(i) $a_1$を求めよ.
(ii) $a_{n+1}$と$a_n$の関係式を求めよ.
(iii) 一般項$a_n$を求めよ.
山形大学 国立 山形大学 2015年 第2問
原点を$\mathrm{O}$とする座標平面上に放物線$y=x^2$がある.この放物線上に$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2)$があり,$a>0$,$b<0$であるとする.$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{AB}}$が垂直であるとき,次の問に答えよ.

(1)$b$を$a$を用いて表せ.
(2)$|\overrightarrow{\mathrm{AB}}|$と$\triangle \mathrm{OAB}$の面積を$a$を用いて表せ.
(3)$|\overrightarrow{\mathrm{OB}}|=3 \sqrt{10}$のとき,点$\mathrm{B}$の座標と$a$を求めよ.
山形大学 国立 山形大学 2015年 第3問
座標平面上の点$(\sqrt{3},\ 0)$を$\mathrm{A}$,点$(-\sqrt{3},\ 0)$を$\mathrm{B}$とする.点$\mathrm{P}(x_1,\ y_1)$が楕円$\displaystyle \frac{x^2}{4}+y^2=1$上にあり,$x_1>0$,$y_1>0$とする.このとき,次の問に答えよ.

(1)$|\overrightarrow{\mathrm{BP}}|$を$x_1$を用いて表せ.
(2)$|\overrightarrow{\mathrm{AP}}|+|\overrightarrow{\mathrm{BP}}|$の値を求めよ.
(3)楕円上の点$\mathrm{P}$における接線$\ell$の方程式を求めよ.
(4)直線$\ell$の法線ベクトルの$1$つを$\overrightarrow{n}$とおく.このとき,$\overrightarrow{\mathrm{AP}}$と$\overrightarrow{n}$のなす角は$\overrightarrow{\mathrm{BP}}$と$\overrightarrow{n}$のなす角に等しいことを示せ.
山形大学 国立 山形大学 2015年 第3問
座標平面上の点$(\sqrt{3},\ 0)$を$\mathrm{A}$,点$(-\sqrt{3},\ 0)$を$\mathrm{B}$とする.点$\mathrm{P}(x_1,\ y_1)$が楕円$\displaystyle \frac{x^2}{4}+y^2=1$上にあり,$x_1>0$,$y_1>0$とする.このとき,次の問に答えよ.

(1)$|\overrightarrow{\mathrm{BP}}|$を$x_1$を用いて表せ.
(2)$|\overrightarrow{\mathrm{AP}}|+|\overrightarrow{\mathrm{BP}}|$の値を求めよ.
(3)楕円上の点$\mathrm{P}$における接線$\ell$の方程式を求めよ.
(4)直線$\ell$の法線ベクトルの$1$つを$\overrightarrow{n}$とおく.このとき,$\overrightarrow{\mathrm{AP}}$と$\overrightarrow{n}$のなす角は$\overrightarrow{\mathrm{BP}}$と$\overrightarrow{n}$のなす角に等しいことを示せ.
大阪教育大学 国立 大阪教育大学 2015年 第3問
$a,\ b$は$0<a<b$を満たす定数とし,関数$y=\log x$のグラフを$G$とする.点$\mathrm{C}$が曲線$G$上を点$\mathrm{A}(a,\ \log a)$から点$\mathrm{B}(b,\ \log b)$まで動くとき,点$\mathrm{C}$から$x$軸への垂線と線分$\mathrm{AB}$との交点を$\mathrm{P}$とし,線分$\mathrm{CP}$の長さの最大値を$L$とする.このとき,以下の問に答えよ.ただし,$\log x$は自然対数を表すものとする.

(1)不等式$\displaystyle a<\frac{b-a}{\log b-\log a}<b$が成り立つことを証明せよ.
(2)$\displaystyle h=\frac{b}{a}$とおくとき,$L$を$h$を用いて表せ.
(3)実数$p,\ q,\ r$が$a<p<b$,$a<q<b$,$a<r<b$を満たすとき,不等式
\[ \frac{p+q+r}{3}<e^L \sqrt[3]{pqr} \]
が成り立つことを証明せよ.ただし,$e$は自然対数の底とする.
山形大学 国立 山形大学 2015年 第4問
$xy$平面上に曲線$C:y=\log x$がある.曲線$C$上の異なる$2$点$\mathrm{A}(a,\ \log a)$,$\mathrm{B}(b,\ \log b)$における法線をそれぞれ$\ell,\ m$とし,$\ell$と$m$の交点を$\mathrm{P}$とする.線分$\mathrm{AP}$の長さを$d$とするとき,次の問いに答えよ.ただし,対数は自然対数である.

(1)$\ell$の方程式を求めよ.
(2)$\mathrm{P}$の座標を$a,\ b$を用いて表せ.
(3)$\displaystyle d=\sqrt{a^2+1} \left( b+\frac{\log a-\log b}{a-b} \right)$を示せ.
(4)$\mathrm{B}$が$\mathrm{A}$に限りなく近づくときの$d$の極限値を$\displaystyle r=\lim_{b \to a}d$とする.

(i) $\displaystyle r=\frac{(a^2+1)^{\frac{3}{2}}}{a}$を示せ.
(ii) $a$が$a>0$の範囲を動くとき,$r$の最小値と,そのときの$a$の値を求めよ.
山形大学 国立 山形大学 2015年 第1問
次の各問に答えよ.

(1)$\triangle \mathrm{ABC}$において,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$で表し,$\angle \mathrm{A}$の大きさを$A$で表すことにする.この三角形において
\[ \frac{a+b}{6}=\frac{b+c}{5}=\frac{c+a}{7} \]
であり,面積が$3 \sqrt{15}$のとき,$\cos A$と$a$を求めよ.
(2)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が,$S_n=2a_n-2^n$で与えられるとき,次の問に答えよ.

(i) $a_1$を求めよ.
(ii) $a_{n+1}$と$a_n$の関係式を求めよ.
(iii) 一般項$a_n$を求めよ.
山形大学 国立 山形大学 2015年 第2問
原点を$\mathrm{O}$とする座標平面上に放物線$y=x^2$がある.この放物線上に$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2)$があり,$a>0$,$b<0$であるとする.$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{AB}}$が垂直であるとき,次の問に答えよ.

(1)$b$を$a$を用いて表せ.
(2)$|\overrightarrow{\mathrm{AB}}|$と$\triangle \mathrm{OAB}$の面積を$a$を用いて表せ.
(3)$|\overrightarrow{\mathrm{OB}}|=3 \sqrt{10}$のとき,点$\mathrm{B}$の座標と$a$を求めよ.
島根大学 国立 島根大学 2015年 第4問
$xy$平面において,点$\mathrm{P}(x,\ y)$と点$(2,\ 0)$の距離が,点$\mathrm{P}$と直線$x=1$の距離の$\sqrt{2}$倍と等しくなるような点$\mathrm{P}$の描く曲線を$C$とする.このとき,次の問いに答えよ.

(1)曲線$C$の方程式を求めよ.
(2)$t$を$0$でない実数とし,曲線$C$と直線$x+y=t$との交点を$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を$t$を用いて表せ.
(3)$(2)$で求めた点$\mathrm{Q}$から$x$軸に下ろした垂線を$\mathrm{QH}$とする.$t$が$2 \leqq t \leqq 4$の範囲を動くとき,線分$\mathrm{QH}$が通過してできる図形の面積を求めよ.
島根大学 国立 島根大学 2015年 第4問
$xy$平面において,点$\mathrm{P}(x,\ y)$と点$(2,\ 0)$の距離が,点$\mathrm{P}$と直線$x=1$の距離の$\sqrt{2}$倍と等しくなるような点$\mathrm{P}$の描く曲線を$C$とする.このとき,次の問いに答えよ.

(1)曲線$C$の方程式を求めよ.
(2)$t$を$0$でない実数とし,曲線$C$と直線$x+y=t$との交点を$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を$t$を用いて表せ.
(3)$(2)$で求めた点$\mathrm{Q}$から$x$軸に下ろした垂線を$\mathrm{QH}$とする.$t$が$2 \leqq t \leqq 4$の範囲を動くとき,線分$\mathrm{QH}$が通過してできる図形の面積を求めよ.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。