タグ「根号」の検索結果

188ページ目:全1904問中1871問~1880問を表示)
東京女子大学 私立 東京女子大学 2010年 第7問
$2$つの曲線$y=e^x$と$y=a \sqrt{x}$の共有点が$1$個であるとき,次の問いに答えよ.

(1)定数$a$と共有点の座標を求めよ.
(2)この$2$つの曲線と$y$軸で囲まれた部分の面積を求めよ.
早稲田大学 私立 早稲田大学 2010年 第6問
関数$\displaystyle y=\frac{1}{x}$のグラフと接する$2$本の直線$\ell_1$,$\ell_2$が第$2$象限で交わっている.実数$a,\ b$は$a>0$,$b<0$とし直線$\ell_1$は点$(a,\ 0)$を通り,直線$\ell_2$は点$(b,\ 0)$を通る.点$\mathrm{A}$は直線$\ell_1$と$x$軸の交点,点$\mathrm{B}$は直線$\ell_1$と直線$\ell_2$の交点,点$\mathrm{C}$は直線$\ell_2$と$y$軸の交点とする.このとき,三角形$\mathrm{ABC}$の面積$S$は$\displaystyle t=\frac{a}{b}$の関数で,
\[ S=\frac{[テ](t+[ト])t}{t+[ナ]} \]
となり,面積$S$は$t=[ニ]-\sqrt{[ヌ]}$で最小値をとる.
神奈川大学 私立 神奈川大学 2010年 第1問
次の空欄$[$\mathrm{(a)]$}$~$[$\mathrm{(g)]$}$を適当に補え.

(1)$\displaystyle x=\frac{\sqrt{2}}{\sqrt{3}-\sqrt{2}},\ y=\frac{\sqrt{3}}{\sqrt{3}+\sqrt{2}}$のとき,$x+y$の値は$[$\mathrm{(a)]$}$である.
(2)$2$次方程式$2x^2+3x+k=0$において,$2$つの解の比が$1:2$であるとき,定数$k$の値は$[$\mathrm{(b)]$}$である.
(3)${64}^{1.5} \times {32}^{-0.4}=[$\mathrm{(c)]$}$である.
(4)$2$つのベクトル$\overrightarrow{a},\ \overrightarrow{b}$が,$|\overrightarrow{a}|=1$,$|\overrightarrow{b}|=2$,$|\overrightarrow{a}-\overrightarrow{b}|=2 \sqrt{2}$を満たすとき,$|\overrightarrow{a}+\overrightarrow{b}|=[$\mathrm{(d)]$}$である.
(5)$\displaystyle \left( 2x-\frac{1}{4} \right)^{10}$の展開式における$x^6$の係数は$[$\mathrm{(e)]$}$である.
(6)$0 \leqq \theta<2\pi$のとき,関数$y=\sin \theta+\sqrt{3} \cos \theta+2$の最小値は$[$\mathrm{(f)]$}$であり,そのときの$\theta$の値は$[$\mathrm{(g)]$}$である.
玉川大学 私立 玉川大学 2010年 第1問
次の$[ ]$を埋めよ.

(1)曲線$y=x^2+2x$と$x$軸とで囲まれる部分の面積は$\displaystyle \frac{[ ]}{[ ]}$である.

(2)直角三角形$\mathrm{ABC}$において,$\mathrm{AB}=5$,$\mathrm{BC}=3$,$\mathrm{CA}=4$,$\angle \mathrm{BAC}=\theta$とするとき,$\displaystyle \cos \theta=\frac{[ ]}{[ ]}$,$\displaystyle \sin \theta=\frac{[ ]}{[ ]}$,$\displaystyle \tan \theta=\frac{[ ]}{[ ]}$である.

(3)次の計算をせよ.


(i) $\displaystyle \frac{1-\displaystyle\frac{1}{\sqrt{2}}}{\sqrt{2}-\displaystyle\frac{1}{\sqrt{2}}}=\sqrt{[ ]}-[ ]$

(ii) $\displaystyle \frac{1-\displaystyle\frac{1}{\sqrt{5}}}{\sqrt{5}-\displaystyle\frac{1}{\sqrt{5}}}=\frac{\sqrt{[ ]}-[ ]}{[ ]}$

(iii) $\displaystyle \frac{1}{1-\displaystyle\frac{1}{1+\sqrt{2}+\sqrt{3}}}=[ ]-\sqrt{[ ]}+\sqrt{[ ]}$


(4)$x \neq 0$とするとき,$\displaystyle k=x+\frac{1}{x}$のとり得る値の範囲は,$k \leqq [ ]$,または$k \geqq [ ]$である.
広島工業大学 私立 広島工業大学 2010年 第1問
次の$[ ]$に適する答を記入せよ.

(1)等式$xy+3x-y-3=5$を満たす自然数$x,\ y$は$x=[ ]$,$y=[ ]$である.
(2)$\mathrm{O}$を原点とする座標平面に$2$点$\mathrm{A}(\cos \theta,\ \sin \theta)$と$\mathrm{B}(\cos 2\theta,\ \sin 2\theta) (0 \leqq \theta \leqq \pi)$がある.このとき,ベクトル$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$が垂直になるのは$\theta=[ ]$のときであり,$|\overrightarrow{\mathrm{AB}}|=1$となるのは$\theta=[ ]$のときである.
(3)$a,\ b$を実数の定数とする.方程式$x^3+ax+b=0$の$1$つの解が$1+\sqrt{2}i$であるとき,$a=[ ]$である.また,この方程式の実数解は$[ ]$である.ただし,$i$は虚数単位とする.
神戸薬科大学 私立 神戸薬科大学 2010年 第1問
以下の文中の$[ ]$の中にいれるべき数または式を求めよ.

(1)$x+y=\sqrt{3}$,$x^2+y^2=5$のとき,$x^3+y^3$は$[ ]$であり,$\displaystyle \frac{y}{x^2}+\frac{x}{y^2}$は$[ ]$である.
(2)次の問いに答えよ.

(i) $\sin 1$,$\sin 2$,$\sin 3$,$\sin 4$のなかで,負となるものは$[ ]$である.また,正となるものの最小値は$[ ]$であり,最大値は$[ ]$である.
(ii) $A,\ B (A \neq B)$がいずれも鋭角のとき,次の$3$つの数の最小値は$[ ]$,最大値は$[ ]$である.
\[ \sin \frac{A+B}{2},\quad \sin \frac{A}{2}+\sin \frac{B}{2},\quad \frac{\sin A+\sin B}{2} \]
ノートルダム清心女子大学 私立 ノートルダム清心女子大学 2010年 第1問
次の設問に答えなさい.

(1)次の計算をしなさい.
\[ (8a^3b^2)(2a^2b)^2 \left( -\frac{1}{4}ab^2 \right)^3 \]
(2)次の$(ⅰ)$~$(ⅲ)$の場合について,それぞれ$x$を求めなさい.ただし,${0}^\circ \leqq x \leqq {90}^\circ$とします.

(i) $\sin {58}^\circ=\cos x$
(ii) $\cos {169}^\circ=-\cos x$
(iii) $\displaystyle \tan {64}^\circ=\frac{1}{\tan x}$

(3)$0<x<y$のとき,次の式を簡単にしなさい.
\[ \sqrt{x^2-2xy+y^2}+\sqrt{x^2-4xy+4y^2} \]
ノートルダム清心女子大学 私立 ノートルダム清心女子大学 2010年 第2問
$a \neq 0$で$b^2-4ac \geqq 0$とするとき,$2$次方程式
\[ ax^2+bx+c=0 \]
の解$x$を与える公式
\[ x=\frac{-b \pm \sqrt{b^2-4ac}}{2a} \]
を導きなさい.
首都大学東京 公立 首都大学東京 2010年 第2問
原点をOとする座標平面上のベクトル$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$は$|\overrightarrow{\mathrm{OA}}|=\sqrt{17},\ |\overrightarrow{\mathrm{OB}}|=\sqrt{10}$を満たし,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角$\theta$が$\displaystyle \cos \theta =- \frac{13}{\sqrt{170}}$を満たしている.ベクトル$\overrightarrow{u},\ \overrightarrow{v}$を$\displaystyle \overrightarrow{u} = \frac{\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}}{2},\ \overrightarrow{v}=\frac{\overrightarrow{\mathrm{OA}}-\overrightarrow{\mathrm{OB}}}{2}$で定める.このとき,以下の問いに答えなさい.

(1)長さ$|\overrightarrow{u}|,\ |\overrightarrow{v}|$と内積$\overrightarrow{u} \cdot \overrightarrow{v}$を求めなさい.
(2)実数$t$に対して$\overrightarrow{\mathrm{OP}} = t \overrightarrow{u}+(1-t)\overrightarrow{v}$とおく.長さ$|\overrightarrow{\mathrm{OP}}|$を最小にする$t$の値を求めなさい.また,そのときの長さ$|\overrightarrow{\mathrm{OP}}|$を求めなさい.
首都大学東京 公立 首都大学東京 2010年 第3問
同一平面上にない$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に対して,$\overrightarrow{\mathrm{OA}} = \overrightarrow{a},\ \overrightarrow{\mathrm{OB}} = \overrightarrow{b},\ \overrightarrow{\mathrm{OC}} = \overrightarrow{c}$とおく.点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を含む平面上に点$\mathrm{D}$をとる.このとき,以下の問いに答えなさい.

(1)$\overrightarrow{\mathrm{OD}} = x \overrightarrow{a} +y \overrightarrow{b} +z \overrightarrow{c}$と表すとき,実数$x,\ y,\ z$が満たすべき条件を求めなさい.
(2)$4$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$は四角形$\mathrm{ABCD}$をなし,次の条件

$\overrightarrow{a} \perp \overrightarrow{b},\ \overrightarrow{b} \perp \overrightarrow{c},\ \overrightarrow{c} \perp \overrightarrow{a},$
$\displaystyle |\overrightarrow{a}| = |\overrightarrow{b}|= |\overrightarrow{c}|= 1,\quad |\overrightarrow{\mathrm{OD}}| = \sqrt{\frac{17}{2}}$

を満たすとする.その辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CD}$,$\mathrm{DA}$の中点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$とし,四角形$\mathrm{PQRS}$が長方形をなすとする.ただし,四角形$\mathrm{PQRS}$は四角形$\mathrm{ABCD}$に含まれるものとする.このとき,$x,\ y,\ z$の値を求めなさい.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。