タグ「根号」の検索結果

187ページ目:全1904問中1861問~1870問を表示)
東京電機大学 私立 東京電機大学 2010年 第1問
次の各問に答えよ.

(1)$3$つの数$a,\ a+6,\ 2a+17$がこの順に等比数列となるような$a$の値をすべて求めよ.
(2)不等式$\displaystyle \left( \frac{1}{2} \right)^{1-x^2}<(2 \sqrt{2})^{x-1}$をみたす$x$の範囲を求めよ.
(3)方程式$\sin^2 x+2 \cos^2 x+3 \cos x+1=0 (0 \leqq x<2\pi)$をみたす$x$を求めよ.
(4)無限級数$\displaystyle \frac{1}{2}+\frac{5}{3}+\frac{1}{2^2}+\frac{5}{3^2}+\frac{1}{2^3}+\frac{5}{3^3}+\cdots$の和を求めよ.
(5)定積分$\displaystyle \int_0^{\frac{\pi}{2}} (2x+1) \sin 4x \, dx$を求めよ.
東京電機大学 私立 東京電機大学 2010年 第4問
次の各問に答えよ.

(1)$3$つの数$a,\ a+6,\ 2a+17$がこの順に等比数列となるような$a$の値をすべて求めよ.
(2)不等式$\displaystyle \left( \frac{1}{2} \right)^{1-x^2}<(2 \sqrt{2})^{x-1}$をみたす$x$の範囲を求めよ.
(3)方程式$\sin^2 x+2 \cos^2 x+3 \cos x+1=0 (0 \leqq x<2\pi)$をみたす$x$を求めよ.
(4)曲線$y=x^3-3x^2+k$が$x$軸と異なる$3$点で交わるような定数$k$の値の範囲を求めよ.
(5)定積分$\displaystyle \int_{-2}^2 |x-1|(3x+1) \, dx$を求めよ.
津田塾大学 私立 津田塾大学 2010年 第2問
一辺の長さが$1$の正四面体$\mathrm{OABC}$の辺$\mathrm{OA}$を$t:1-t (0 \leqq t \leqq 1)$に内分する点を$\mathrm{P}$とし,$\angle \mathrm{BPC}=\theta$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{PB}}$,$\overrightarrow{\mathrm{PC}}$を$t$と$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$で表せ.
(2)$|\overrightarrow{\mathrm{PB}}|=|\overrightarrow{\mathrm{PC}}|=\sqrt{t^2-t+1}$を示せ.
(3)点$\mathrm{P}$が辺$\mathrm{OA}$を動くとき,$\cos \theta$の最小値を求めよ.
津田塾大学 私立 津田塾大学 2010年 第2問
次の問に答えよ.

(1)関数$y=x^3+3x^2-2$のグラフを描け.
(2)$0 \leqq \theta \leqq \pi$のとき,関数$y=(-\sin \theta+\sqrt{3}\cos \theta)^3+3(-\sin \theta+\sqrt{3}\cos \theta)^2-2$の最大値と最小値,およびそのときの$\theta$の値を求めよ.
津田塾大学 私立 津田塾大学 2010年 第4問
$x \geqq 0$の範囲で関数$y=\sqrt{x}e^{-x}$のグラフを$C$とする.

(1)$C$の概形を描け.ただし$\displaystyle \lim_{x \to \infty} \sqrt{x}e^{-x}=0$は証明せずに使ってよい.
(2)$M>0$とする.曲線$C$と$x$軸で囲まれた図形を$x$軸のまわりに$1$回転してできる立体のうち,$x \leqq M$の部分の体積$V(M)$を求めよ.
(3)極限値$\displaystyle \lim_{M \to \infty}V(M)$を求めよ.
北海道医療大学 私立 北海道医療大学 2010年 第2問
累乗根,対数,三角関数について以下の問に答えよ.

(1)次の式を簡単にせよ.
\[ \begin{array}{lll}
① \sqrt[8]{16^2} & & ② \sqrt[3]{4} \div \sqrt{8} \times \sqrt[4]{32} \\
③ \log_3 81 & & ④ (\log_23+\log_49)(\log_34+\log_92)
\end{array} \]
(2)$0^\circ<\theta<{90}^\circ$で,$\displaystyle \frac{1}{\cos \theta}-\frac{1}{\sin \theta}=\sqrt{3}$であるとする.

\mon[$(2$-$1)$] $x=\sin \theta \cos \theta$とするとき,$x$に関する$2$次方程式を求めよ.
\mon[$(2$-$2)$] $\sin \theta \cos \theta$の値を求めよ.
\mon[$(2$-$3)$] 次の値を求めよ.
\[ ① \sin \theta \qquad ② \tan \theta \]
\mon[$(2$-$4)$] 次の式の値を求めよ.
\[ ① \frac{1}{\cos {60}^\circ}-\frac{1}{\sin {60}^\circ} \qquad ② \frac{1}{\cos {75}^\circ}-\frac{1}{\sin {75}^\circ} \]
関西大学 私立 関西大学 2010年 第2問
平面上の四角形$\mathrm{OABC}$について,$\mathrm{OA}=\mathrm{OB}=1$,$\displaystyle \mathrm{OC}=\frac{\sqrt{7}}{3}$および$\displaystyle \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{OB}}-\frac{2}{3} \overrightarrow{\mathrm{OA}}$が成り立っているとする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.次の$[ ]$をうめよ.

$\mathrm{CB}=[$1$]$,$\overrightarrow{a} \cdot \overrightarrow{b}=[$2$]$であり,$\angle \mathrm{AOB}$は$[$3$]$度である.
$t>0$とし,直線$\mathrm{OA}$上に点$\mathrm{D}$を$\overrightarrow{\mathrm{OD}}=t \overrightarrow{\mathrm{OA}}$となるようにとる.このとき,線分$\mathrm{OB}$と線分$\mathrm{CD}$との交点を$\mathrm{P}$とおくと,$t$を用いて$\overrightarrow{\mathrm{OP}}=[$4$] \overrightarrow{b}$と書ける.
$\triangle \mathrm{OPD}$の重心$\mathrm{G}$が$\triangle \mathrm{OAB}$の内部または周上にあるような$t$の範囲は$0<t \leqq [$5$]$である.また,$\triangle \mathrm{OPD}$の外心を$\mathrm{R}$とおくと,$\overrightarrow{\mathrm{OR}}-[$6$] \overrightarrow{\mathrm{OD}}$と$\overrightarrow{a}$が垂直であり,$\overrightarrow{\mathrm{OR}}-[$6$] \overrightarrow{\mathrm{OP}}$と$\overrightarrow{b}$も垂直であることから,$\displaystyle t=\frac{1}{3}$のとき,$\overrightarrow{\mathrm{OR}}=[$7$] \overrightarrow{a}+[$8$] \overrightarrow{b}$であり,$|\overrightarrow{\mathrm{OR}}|=[$9$]$である.
関西大学 私立 関西大学 2010年 第4問
次の$[ ]$をうめよ.

(1)$x^2-3x+5=0$の$2$つの解を$\alpha,\ \beta$とする.このとき,$\alpha^2+\beta^2=[$1$]$であり,さらに$\displaystyle \frac{\alpha}{\beta}+\frac{\beta}{\alpha}=[$2$]$である.
(2)$xy$平面上の$3$点$(1,\ 2)$,$(2,\ 4)$,$(3,\ 1)$にあと$1$点$\mathrm{A}$を加えることにより,それらが平行四辺形の$4$つの頂点になるとする.このとき,$\mathrm{A}$の$y$座標をすべて求めると$[$3$]$である.
(3)$n$は自然数とする.$(x+y+1)^n$を展開したとき,$xy$の項の係数は$90$であった.このときの$n$の値は$[$4$]$である.
(4)$-1<x$において,関数$f(x)$は
\[ f(x)=\lim_{n \to \infty} \frac{x^n}{x^{n+2}+x^n+1} \]
で定義されている.$f(x)$を求めると,ある値$\alpha$で$f(x)$が連続にならないことがわかる.このとき$f(\alpha)$と等しい値をとるもうひとつの$x$は$[$5$]$である.
(5)$i=\sqrt{-1}$とする.複素数$\alpha=1+\sqrt{3}i$に対して,$\displaystyle \frac{(\alpha+2)^6}{\alpha^3}$の値は$[$6$]$である.
(6)$0<x \leqq \pi$とする.方程式
\[ \sin 3x+\sin x=\cos x \]
の解$x$をすべて求めると$[$7$]$である.
中央大学 私立 中央大学 2010年 第1問
次の問いの答を記入せよ.

(1)$|\overrightarrow{a}|=3$,$|\overrightarrow{b}|=4$,$|\overrightarrow{a}+\overrightarrow{b}|=6$のとき,$|\overrightarrow{a}-\overrightarrow{b}|$の値を求めよ.
(2)定義域が$0 \leqq x \leqq 3$である$2$次関数$y=-ax^2+2ax+b$の最大値が$3$で,最小値が$-5$であるとき,定数$a,\ b$の値を求めよ.ただし$a>0$とする.
(3)$\displaystyle \cos \theta=-\frac{\sqrt{3}}{2}$を満たす角$\theta$を求めよ.ただし,$0^\circ \leqq \theta \leqq {180}^\circ$とする.
(4)$3$つの数$x-2,\ x+1,\ x+7$がこの順で等比数列となるとき,$x$の値を求めよ.
(5)白玉$3$個,赤玉$2$個が入っている袋から玉を$1$個取り出し色を確認してからもとに戻す.この操作を$3$回続けて行う.$1$回目に白,$2$回目に赤,$3$回目に赤の玉が取り出される確率を求めよ.ただし,どの玉も取り出される確率は等しいとする.
(6)関数$y=x^3-12x$の区間$-1 \leqq x \leqq 3$における最大値と最小値を求めよ.
(7)次の条件を満たす関数$f(x)$を求めよ.
\[ \left\{ \begin{array}{l}
f^\prime(x)=6x^2-2x+3 \\
f(1)=7
\end{array} \right. \]
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2010年 第1問
空間内の四面体$\mathrm{OABC}$について,$|\overrightarrow{\mathrm{OA}}|=3 \sqrt{2}$,$|\overrightarrow{\mathrm{OB}}|=4$,$|\overrightarrow{\mathrm{OC}}|=3$,$\displaystyle \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=\frac{9}{2}$,$\displaystyle \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=\frac{11}{2}$,$\angle \mathrm{BAC}={60}^\circ$とする.このとき以下の$[$1$]$から$[$9$]$に該当する数値を答えなさい.

$|\overrightarrow{\mathrm{AB}}|=[$1$]$,$|\overrightarrow{\mathrm{AC}}|=[$2$]$であり,また,$\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}=[$3$]$である.
$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とするとき,
$\overrightarrow{\mathrm{OD}}=[$4$] \overrightarrow{\mathrm{OA}}+[$5$] \overrightarrow{\mathrm{OB}}+[$6$] \overrightarrow{\mathrm{OC}}$である.
$\triangle \mathrm{OAC}$の重心$\mathrm{G}$と点$\mathrm{B}$を結ぶ線分が$\triangle \mathrm{OAD}$と交わる点を$\mathrm{E}$とするとき,
$\overrightarrow{\mathrm{OE}}=[$7$] \overrightarrow{\mathrm{OA}}+[$8$] \overrightarrow{\mathrm{OB}}+[$9$] \overrightarrow{\mathrm{OC}}$である.
なお,この空間の任意のベクトル$\overrightarrow{p}$は,実数$s,\ t,\ u$を用いて,
$\overrightarrow{p}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}+u \overrightarrow{\mathrm{OC}}$
の形に表すことができ,しかも,表し方はただ$1$通りである.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。