タグ「根号」の検索結果

12ページ目:全1904問中111問~120問を表示)
慶應義塾大学 私立 慶應義塾大学 2016年 第5問
四面体$\mathrm{OABC}$の$4$つの面はすべて合同であり,$\mathrm{OA}=\sqrt{10}$,$\mathrm{OB}=2$,$\mathrm{OC}=3$であるとする.このとき,$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=[ニ]$であり,三角形$\mathrm{ABC}$の面積は$[ヌ]$である.

いま,$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面を$\alpha$とし,点$\mathrm{O}$から平面$\alpha$に垂線$\mathrm{OH}$を下ろす.$\overrightarrow{\mathrm{AH}}$は$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$を用いて$\overrightarrow{\mathrm{AH}}=[ネ]$と表される.また,四面体$\mathrm{OABC}$の体積は$[ノ]$である.
次に,線分$\mathrm{AH}$と線分$\mathrm{BC}$の交点を$\mathrm{P}$,点$\mathrm{P}$から線分$\mathrm{AC}$に下ろした垂線を$\mathrm{PQ}$とすると,$\mathrm{PQ}$の長さは$[ハ]$である.また,$2$点$\mathrm{P}$,$\mathrm{Q}$を通り平面$\alpha$に垂直な平面による四面体$\mathrm{OABC}$の切り口の面積は$[ヒ]$である.

(図は省略)
慶應義塾大学 私立 慶應義塾大学 2016年 第2問
$a$を正の実数,$b,\ c$を実数とする.$f(x)=ax^2+bx+c$とし,$f^\prime(x)$を$f(x)$の導関数とする.

(1)放物線$y=f(x)$と直線$y=f^\prime(x)$が接するための必要十分条件は
\[ b^2=[ウ] \qquad \cdots\cdots(\mathrm{A}) \]
である.
(2)条件$(\mathrm{A})$が成り立つとき,その接点の座標は
\[ \left( [$4$]-\frac{b}{[$5$]a},\ [$6$]a \right) \]
である.このとき,直線$y=f^\prime(x)$は放物線$y=-f(x)$とも接し,その接点$\mathrm{P}$の座標は
\[ \left( [$7$][$8$]-\frac{b}{[$9$]a},\ [$10$][$11$]a \right) \]
である.
(3)直線$y=f^\prime(x)$が原点を中心とする半径$\sqrt{2}$の円$\mathrm{O}$と接するための必要十分条件は
\[ b^2=[エ] \qquad \cdots\cdots(\mathrm{B}) \]
である.この条件が成り立つとき,その接点を$\mathrm{Q}$とする.
(4)条件$(\mathrm{A}),\ (\mathrm{B})$が成り立ち,さらに点$\mathrm{P}$が点$\mathrm{Q}$と一致するのは,
\[ a=\frac{[$12$]}{[$13$]},\quad b=[$14$][$15$],\quad c=\frac{[$16$]}{[$17$]} \]
のときである.このとき,円$\mathrm{O}$は放物線$y=f(x)$とただ$1$つの共有点$([$18$],\ [$19$])$をもち,放物線$y=f(x)$,直線$y=f^\prime(x)$および円$\mathrm{O}$で囲まれた図形の面積は
\[ \frac{[$20$]}{[$21$]}-\frac{[$22$]}{[$23$]} \pi \]
である.
慶應義塾大学 私立 慶應義塾大学 2016年 第3問
球面$S:x^2-8x+y^2-4y+z^2+6z+20=0$は点$\mathrm{A}([$24$],\ [$25$],\ [$26$])$で$xy$平面と接し,球面$S$と$zx$平面との交わりは中心$\mathrm{B}([$27$],\ [$28$],\ [$29$][$30$])$,半径$\sqrt{[$31$]}$の円である.

球面$S$の中心を$\mathrm{C}$,線分$\mathrm{AB}$を$\sqrt{3}:2$に外分する点を$\mathrm{P}$とすると,$\mathrm{P}$の座標は
\[ \left( [$32$],\ [$33$]+[$34$] \sqrt{[$35$]},\ [$36$]+[$37$] \sqrt{[$38$]} \right) \]
であり,$\displaystyle \angle \mathrm{ACP}=\frac{[$39$]}{[$40$]} \pi$(ただし$0 \leqq \angle \mathrm{ACP} \leqq \pi$)である.また,三角形$\mathrm{BPC}$の辺および内部が球面$S$と交わってできる図形は,長さ$\displaystyle \frac{[$41$]}{[$42$]} \pi$の円弧である.
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
中心の座標が$(1,\ 1)$,半径が$2 \sqrt{2}$である座標平面上の円を$C$とする.$C$上の点$\mathrm{P}(x,\ y)$に対して$t=x+y$とおく.

(1)$\mathrm{P}(x,\ y)$が$C$上を動くとき$t$が取り得る値の範囲は$[$1$][$2$] \leqq t \leqq [$3$][$4$]$である.特に$t=0$のとき,$x^2+y^2=[$5$]$が成り立つ.
(2)$\mathrm{P}(x,\ y)$が$C$上を動くとき,$xy$の値は$t=[$6$]$のとき最小値$\displaystyle \frac{[$7$][$8$]}{[$9$]}$をとる.
(3)$\mathrm{P}(x,\ y)$が$C$上を動くとき,$x^3+y^3$の値は$t=[$10$]+\sqrt{[$11$][$12$]}$のとき最大になる.
早稲田大学 私立 早稲田大学 2016年 第5問
$xyz$空間上に点$\mathrm{A}(0,\ 0,\ \sqrt{3})$をとる.$xy$平面上の点$\mathrm{P}(a,\ b,\ 0)$は,線分$\mathrm{AP}$の長さが$2$で,$a \geqq 0$,$b \geqq 0$となるように動く.このとき線分$\mathrm{AP}$がえがく図形を$F$とする.次の問に答えよ.

(1)点$\mathrm{P}$の軌跡を$xy$平面上に図示せよ.
(2)点$\mathrm{Q}(x,\ y,\ z)$を図形$F$上の点とするとき,$z$を$x,\ y$を用いて表せ.
(3)図形$F$,座標平面$x=0$,$y=0$,$z=0$によって囲まれる部分を$x$軸の周りに$1$回転してできる回転体を$V$とする.$V$の平面$x=t$による切り口の面積$S(t)$を,$t$を用いて表せ.
(4)$V$の体積を求めよ.
早稲田大学 私立 早稲田大学 2016年 第2問
点$\mathrm{F}(0,\ 1)$を通り,直線$y=-1$に接する円の中心が描く軌跡を曲線$C$とする.このとき,曲線$C$を表す方程式は
\[ y=\frac{1}{[ウ]}x^2 \]
となる.また,曲線$C$上に$x$座標が正である点$\mathrm{P}$をとる.線分$\mathrm{FP}$の長さが$4$となるとき,曲線$C$の点$\mathrm{P}$における接線と曲線$C$および$y$軸とで囲まれる図形の面積は$[エ] \sqrt{[オ]}$となる.
早稲田大学 私立 早稲田大学 2016年 第3問
次の不等式
\[ 1+\log_{\sqrt{x}} (n^2)<\log_n \sqrt{x}<\frac{1}{2}(1+\log_{\sqrt{n}} 3) \quad \cdots \quad (*) \]
を満たす自然数$n$と実数$x$について,以下の問に答えよ.

(1)次の空欄にあてはまる数を記入せよ.
$t=\log_n x$とおく.このとき,$\displaystyle 1+\log_{\sqrt{x}} (n^2)=1+\frac{[ア]}{t}$,$\log_n \sqrt{x}=[イ] \times t$である.したがって,不等式$1+\log_{\sqrt{x}}(n^2)<\log_n \sqrt{x}$が満たされることは,
$[ウ]<t<[エ]$または$t>[オ]$であることと同値である.
(2)$x$も自然数であるとき,不等式$(*)$を満たす組$(n,\ x)$をすべて求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第5問
$1$辺の長さが$\sqrt{2}$の正方形$\mathrm{ABCD}$を底面とし,$4$つの正三角形を側面とする正四角錐$\mathrm{O}$-$\mathrm{ABCD}$がある.$\mathrm{OA}$と$\mathrm{OC}$を$4:1$に内分する点をそれぞれ$\mathrm{P}$と$\mathrm{R}$,正の実数$r$に対して$\mathrm{OB}$を$1:r$に内分する点を$\mathrm{Q}$とする.

(1)内積$\overrightarrow{\mathrm{PQ}} \cdot \overrightarrow{\mathrm{QR}}$と$\overrightarrow{\mathrm{PR}} \cdot \overrightarrow{\mathrm{OQ}}$を計算せよ.答が$r$の有理式になる場合は,$1$つの既約分数式で解答せよ.
(2)線分$\mathrm{PR}$の中点を$\mathrm{M}$とする.$\mathrm{QM}$と$\mathrm{OD}$が平行になる$r$を求めよ.
(3)$\mathrm{QM}$と$\mathrm{OD}$が平行なとき,$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る平面$\alpha$で正四角錐$\mathrm{O}$-$\mathrm{ABCD}$を$2$つの多面体に切り分ける.このとき,$\alpha$による切り口の図形の面積,および,切り分けたうち頂点$\mathrm{O}$を含む多面体の体積を求めよ.
早稲田大学 私立 早稲田大学 2016年 第2問
次の問に答えよ.

(1)負でない実数の数列$a_1,\ a_2,\ \cdots$は,すべての$n=1,\ 2,\ \cdots$に対して
\[ a_{n+1}=\sqrt{a_n} \]
を満たしているとする.このとき,次の各問いに答えよ.

(i) $a_1=256$であるとき,$a_4$は$[コ]$であり,$2^{-\frac{1}{100}} \leqq a_n \leqq 2^{\frac{1}{100}}$を満たす最小の自然数$n$は$[サ]$である.
(ii) $\displaystyle a_1=\frac{1}{256}$であるとき,$a_4$は$[シ]$であり,$2^{-\frac{1}{100}} \leqq a_n \leqq 2^{\frac{1}{100}}$を満たす最小の自然数$n$は$[ス]$である.
(iii) $a_1=a_2=a_3=\cdots$となるような初項$a_1$は$[セ]$個存在する.

(2)$1$つのサイコロを何回か投げる場合を考える.$4$回投げたとき,$1$または$2$の目が奇数回出る確率は$[ソ]$である.また,$n$回投げたときに$1$または$2$の目が奇数回出る確率を$p_n$とするとき,$p_n$を$n$の式で表すと$[タ]$である.
早稲田大学 私立 早稲田大学 2016年 第5問
複素数$z_1,\ z_2,\ z_3$を表す複素数平面上の点を,それぞれ$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とする.$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が$\mathrm{AB}:\mathrm{BC}:\mathrm{CA}=1:\sqrt{3}:2$の三角形を作るとき
\[ \frac{z_3-z_1}{z_2-z_1}=[ヌ] \pm \sqrt{[ネ]}i \]
である.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。