タグ「条件」の検索結果

26ページ目:全636問中251問~260問を表示)
京都教育大学 国立 京都教育大学 2014年 第3問
次の問に答えよ.

(1)$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$は異なる$3$点,$\mathrm{M}$は線分$\mathrm{AB}$の中点であるとする.このとき,
\[ \mathrm{OA}^2+\mathrm{OB}^2=2(\mathrm{AM}^2+\mathrm{OM}^2) \]
であることを証明せよ.
(2)$xy$平面の原点$\mathrm{O}$を中心とする半径$3$の円を$\mathrm{O}_3$,$xy$平面の$\mathrm{O}$を中心とする半径$4$の円を$\mathrm{O}_4$とする.さらに$\mathrm{AB}$は$xy$平面上の長さ$6$の線分,$\mathrm{M}$は線分$\mathrm{AB}$の中点であるとする.次の条件$p,\ q$を考える.

$p:2$点$\mathrm{A}$,$\mathrm{B}$は$\mathrm{O}_4$の内部にある.
$q:$点$\mathrm{M}$は$\mathrm{O}_3$の内部にある.

このとき,次の問に答えよ.

(i) $p$は$q$であるための十分条件であることを証明せよ.
(ii) $p$は$q$であるための必要条件ではないことを証明せよ.
秋田大学 国立 秋田大学 2014年 第2問
条件$a_1=0$,$a_{n+1}=4a_n+3 (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$がある.関数$f_n(x)$と$g(x)$が
\[ \begin{array}{l}
f_n(x)=a_nx^2+a_n+1 \\
g(x)=x^3+3x^2-9x+4 \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \]
で定義されるとき,次の問いに答えよ.

(1)数列$\{a_n\}$の一般項を求めよ.また,$\displaystyle \sum_{k=1}^n a_k$を求めよ.
(2)関数$y=|f_2(x)-g(x)|$のグラフをかけ.また,$-3 \leqq x \leqq 3$の範囲で$y$の値の最大値とそのときの$x$の値を求めよ.
秋田大学 国立 秋田大学 2014年 第2問
条件$a_1=0$,$a_{n+1}=4a_n+3 (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$がある.関数$f_n(x)$と$g(x)$が
\[ \begin{array}{l}
f_n(x)=a_nx^2+a_n+1 \\
g(x)=x^3+3x^2-9x+4 \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \]
で定義されるとき,次の問いに答えよ.

(1)数列$\{a_n\}$の一般項を求めよ.また,$\displaystyle \sum_{k=1}^n a_k$を求めよ.
(2)関数$y=|f_2(x)-g(x)|$のグラフをかけ.また,$-3 \leqq x \leqq 3$の範囲で$y$の値の最大値とそのときの$x$の値を求めよ.
信州大学 国立 信州大学 2014年 第1問
次の$3$つの条件によって定められる数列$\{a_n\}$の一般項を求めよ.

(i) $a_1=0$
(ii) $a_1<a_2<\cdots<a_n<a_{n+1}<\cdots$
(iii) 放物線$y=x^2$と,その上の点$(a_n,\ {a_n}^2)$における接線と,直線$x=a_{n+1}$とで囲まれる図形の面積が$8^n$になる.
信州大学 国立 信州大学 2014年 第2問
次の各問いに答えよ.

(1)$3$つのベクトル$\overrightarrow{a}=(2,\ 1,\ 1)$,$\overrightarrow{b}=(2,\ s,\ t)$,$\overrightarrow{c}=(p,\ q,\ 2)$が次の条件をみたすような,$s,\ t,\ p,\ q$の値を求めよ.

(i) $|\overrightarrow{a}|=|\overrightarrow{b}|$
(ii) $\overrightarrow{a}$と$\overrightarrow{b}$のなす角は$60^\circ$
(iii) $\overrightarrow{c}$は$\overrightarrow{a}$と$\overrightarrow{b}$の両方に直交する.

(2)$n$を$0$以上の整数とする.$n+1$個の自然数$2^0,\ 2^1,\ \cdots,\ 2^n$の中に,最上位の桁の数字が$1$であるものはいくつあるか.ただし,$x$を超えない最大の整数を表す記号$[x]$を用いて解答してよい.

注:例えば$2014$の最上位の桁の数字は$2$であり,$14225$の最上位の桁の数字は$1$である.
信州大学 国立 信州大学 2014年 第3問
次の各問いに答えよ.

(1)$3$つのベクトル$\overrightarrow{a}=(2,\ 1,\ 1)$,$\overrightarrow{b}=(2,\ s,\ t)$,$\overrightarrow{c}=(p,\ q,\ 2)$が次の条件をみたすような,$s,\ t,\ p,\ q$の値を求めよ.

(i) $|\overrightarrow{a}|=|\overrightarrow{b}|$
(ii) $\overrightarrow{a}$と$\overrightarrow{b}$のなす角は$60^\circ$
(iii) $\overrightarrow{c}$は$\overrightarrow{a}$と$\overrightarrow{b}$の両方に直交する.

(2)$n$を$0$以上の整数とする.$n+1$個の自然数$2^0,\ 2^1,\ \cdots,\ 2^n$の中に,最上位の桁の数字が$1$であるものはいくつあるか.ただし,$x$を超えない最大の整数を表す記号$[x]$を用いて解答してよい.

注:例えば$2014$の最上位の桁の数字は$2$であり,$14225$の最上位の桁の数字は$1$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第2問
$x$に関する$3$つの関数$f_1(x)=x(15-x)$,$\displaystyle f_2(x)=\frac{x(30-x)}{2}$,$f_3(x)=x(17-x)$が与えられている.

(1)$x_1+x_2=c$,$x_1 \geqq 0$,$x_2 \geqq 0$という条件の下で$f_1(x_1)+f_2(x_2)$を最大にする問題を考える.ただし,$c$は$20$以下の正数とする.最大値$V(c)$を与える$x_1,\ x_2$の値をそれぞれ$p,\ q$とすると,$\displaystyle q=\frac{[$10$][$11$]}{[$12$][$13$]}c$である.$V(c)=42$となる$c$の値は$[$14$][$15$]$である.
(2)$x_1+x_2+x_3=20$,$x_1 \geqq 0$,$x_2 \geqq 0$,$x_3 \geqq 0$という条件の下で
\[ f_1(x_1)+f_2(x_2)+f_3(x_3) \]
を最大にする問題を考える.最大値を与える$x_1,\ x_2,\ x_3$の値をそれぞれ$p,\ q,\ r$とすると
\[ q=\frac{[$16$][$17$]}{[$18$][$19$]},\quad r=\frac{[$20$][$21$]}{[$22$][$23$]} \]
である.
自治医科大学 私立 自治医科大学 2014年 第7問
放物線$y=x^2+ax+b$と直線$y=x+a$が接しているとき,条件を満たす$(a,\ b)$は,何組あるか.ただし,$a,\ b$はともに整数であり,$b<10$とする.
獨協大学 私立 獨協大学 2014年 第3問
数列$\{a_n\}$と数列$\{b_n\}$が以下の条件を満たすとする.
\[ a_1=3,\ b_1=2,\ a_{n+1}=4a_n+b_n,\ b_{n+1}=a_n+4b_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,次の問題に答えよ.

(1)$c_n=a_n-b_n (n=1,\ 2,\ 3,\ \cdots)$で定められる数列$\{c_n\}$の一般項を求めよ.
(2)数列$\{a_n\}$の一般項を求めよ.
神戸薬科大学 私立 神戸薬科大学 2014年 第6問
底面が半径$1$の円である円錐$S$と,$S$と相似であるが半径が不明な円錐$L$がある.

(1)$S$と$L$の表面積の比が$1:12$のとき$L$の底面の半径を求めると$[チ]$である.
(2)$(1)$の条件のもとで,$L$の高さが$6$のとき,$L$に側面と底面で内接する球の半径を求めると$[ツ]$であり,その球の体積を求めると$[テ]$となる.
スポンサーリンク

「条件」とは・・・

 まだこのタグの説明は執筆されていません。