タグ「条件」の検索結果

15ページ目:全636問中141問~150問を表示)
浜松医科大学 国立 浜松医科大学 2015年 第3問
$t$は実数で$\displaystyle 0<t<\frac{\pi}{2}$を満たすとする.平面上に点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(-1,\ 0)$,$\mathrm{P}(\cos t,\ \sin t)$,$\mathrm{Q}(1,\ \sin t)$をとる.このとき以下の問いに答えよ.

(1)点$\mathrm{A}$と点$\mathrm{P}$を通る直線を$\ell$,点$\mathrm{O}$と点$\mathrm{Q}$を通る直線を$m$とする.このとき$\ell,\ m$の交点$\mathrm{R}$の座標を求めよ.
(2)$t$が$\displaystyle 0<t<\frac{\pi}{2}$の範囲全体を動くときに点$\mathrm{R}$が描く曲線を$C$とする.このとき,点$(x,\ y) (x>0,\ y>0)$が$C$上にあるための条件を$x,\ y$の式で表せ.
(3)曲線$C$の点$\mathrm{R}$における接線を$n$とする.ある$t$に対して直線$\ell,\ m$がなす鋭角と直線$m,\ n$がなす鋭角が等しくなる.この状況のもとで,以下の問いに答えよ.

(i) 点$\mathrm{P}(\cos t,\ \sin t)$の座標を求めよ.
(ii) 直線$\ell$と$n$のなす鋭角を$\theta$とおく.また,点$\mathrm{O}$を中心とし半径が$1$の円と直線$n$との$2$交点のうち,$y$座標が正の点を$\mathrm{S}(\cos \phi,\ \sin \phi)$とおく.このとき,$\theta=\phi$を示せ.
京都教育大学 国立 京都教育大学 2015年 第3問
正の実数$x,\ y,\ z$に関する,次の$3$つの条件を考える.

$p:2^x=3^y=6^z$
$q:2^x=3^y$
$\displaystyle r:\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$


(1)$p$は$r$の十分条件であることを証明せよ.
(2)$p$は$r$の必要条件ではないことを証明せよ.
(3)$p$は「$q$かつ$r$」の必要条件であることを証明せよ.
東京医科歯科大学 国立 東京医科歯科大学 2015年 第3問
座標平面上で次のように媒介変数表示される曲線$C$を考える.
\[ \left\{ \begin{array}{l}
x=|\cos t| \cos^3 t \\
y=|\sin t| \sin^3 t \phantom{\frac{\mkakko{}}{2}}
\end{array} \right. \hspace{-8mm}(0 \leqq t \leqq 2\pi) \]
このとき以下の各問いに答えよ.

(1)次の条件$(*)$を満たす第$1$象限内の定点$\mathrm{F}$の座標を求めよ.
$(*)$ 第$1$象限内で$C$上にあるすべての点$\mathrm{P}$について,$\mathrm{P}$から直線$x+y=0$に下ろした垂線を$\mathrm{PH}$とするとき,つねに$\mathrm{PF}=\mathrm{PH}$となる.
(2)点$\mathrm{P}$が$C$全体を動くとき,$\mathrm{P}$と$(1)$の定点$\mathrm{F}$を結ぶ線分$\mathrm{PF}$が通過する領域を図示し,その面積を求めよ.
(3)$(2)$の領域を$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2015年 第1問
座標平面上で次のように媒介変数表示される曲線$C$を考える.
\[ \left\{ \begin{array}{l}
x=|\cos t| \cos^3 t \\
y=|\sin t| \sin^3 t \phantom{\frac{\mkakko{}}{2}}
\end{array} \right. \hspace{-8mm}(0 \leqq t \leqq 2\pi) \]
このとき以下の各問いに答えよ.

(1)次の条件$(*)$を満たす第$1$象限内の定点$\mathrm{F}$の座標を求めよ.
$(*)$ 第$1$象限内で$C$上にあるすべての点$\mathrm{P}$について,$\mathrm{P}$から直線$x+y=0$に下ろした垂線を$\mathrm{PH}$とするとき,つねに$\mathrm{PF}=\mathrm{PH}$となる.
(2)点$\mathrm{P}$が$C$全体を動くとき,$\mathrm{P}$と$(1)$の定点$\mathrm{F}$を結ぶ線分$\mathrm{PF}$が通過する領域を図示し,その面積を求めよ.
(3)$(2)$の領域を$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
宇都宮大学 国立 宇都宮大学 2015年 第4問
微分可能な関数$f(x)$は,$2$つの条件$f^\prime(x)=xe^x$,$f(1)=0$を満たしている.このとき,次の問いに答えよ.

(1)関数$f(x)$を求めよ.
(2)すべての$x$に対して次の等式を満たす関数$g(x)$を求めよ.
\[ g(x)=f(x)+\frac{(2-x)e^x}{e-1} \int_0^1 g(t) \, dt \]
(3)$g(x)$を$(2)$で求めた関数とし,$k$を定数とする.$x$についての方程式$g(x)=kx$の異なる実数解の個数を調べよ.ただし,$\displaystyle \lim_{x \to \infty} \frac{e^x}{x}=\infty$を用いてよい.
早稲田大学 私立 早稲田大学 2015年 第3問
$a,\ b$を実数とし,
\[ f(x)=x^2+ax+1,\quad g(x)=-x^2-bx+1 \]
とおく.次の問に答えよ.

(1)方程式$f(x)=0$と$g(x)=0$が共通の解を持つための$a,\ b$の条件を求めよ.
(2)$a \geqq 0,\ b \geqq 0$の範囲で,$(1)$で求めた条件をみたしながら$a,\ b$を動かす.$f(x)=0$と$g(x)=0$の共通解を$\alpha$とし,$y=f(x)$のグラフ上の点$(\alpha,\ 0)$における接線を$\ell$とする.このとき,$y=g(x)$のグラフと$\ell$で囲まれる部分の面積$S$の最小値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
$0<\theta _n<1 \ (n=1,\ 2,\ 3,\ \cdots)$となる数列$\{\theta_n\}$を用いて,閉区間$[0,\ 1]$から始めて,以下のようにしていくつかの閉区間を残す操作を繰り返す.ただし,$a<b$とするとき,開区間$(a,\ b)$の長さは閉区間$[a,\ b]$の長さと等しく$b-a$である.

$1$回目の操作では,閉区間$\displaystyle \left[ 0,\ \frac{1-\theta_1}{2} \right]$と$\displaystyle \left[ \frac{1+\theta_1}{2},\ 1 \right]$を残す.残った閉区間の個数を$k_1$,各閉区間の長さを$r_1$とおき,$s_1$を$s_1=k_1r_1$と定める.$k_1=2$,$\displaystyle r_1=\frac{1-\theta_1}{2}$,$s_1=1-\theta_1$である.
$n+1$回目の操作では,$n$回目の操作を終えて残った$k_n$個の長さ$r_n$の各閉区間から長さ$\theta_{n+1}r_n$の閉区間を取り除き,長さの等しい閉区間を$2$個ずつ残す.こうして残った閉区間の個数を$k_{n+1}$,各閉区間の長さを$r_{n+1}$とおき,$s_{n+1}$を$s_{n+1}=k_{n+1}r_{n+1}$と定める.
(1)$\displaystyle \lim_{n \to \infty} r_n=[サ]$である.
(2)$\displaystyle \theta_n=\frac{2}{(n+1)(n+2)} (n=1,\ 2,\ 3,\ \cdots)$のとき,$\displaystyle \lim_{n \to \infty}s_n=[シ]$である.
(3)$0<\theta<1$とし,$\theta_n=\theta (n=1,\ 2,\ 3,\ \cdots)$とする.$n=1,\ 2,\ 3,\ \cdots$に対して,閉区間$[0,\ 1]$を定義域とする連続関数$f_n(x)$と実数$a_n$が次の条件を満たすとする.

\mon[条件:] $f_n(0)=0$で$f_n(1)=1$である.関数$f_n(x)$は,$n$回目までの操作で取り除いた各開区間において微分可能で${f_n}^\prime(x)=0$となり,$n$回目の操作を終えて残った各閉区間から両端を除いた開区間において微分可能で${f_n}^\prime(x)=a_n$となる.

このとき$a_n$を$\theta$と$n$を用いて表すと$a_n=[ス]$となる.関数$y=f_n(x) (0 \leqq x \leqq 1)$のグラフは折れ線になり,その長さを$l_n$とおくと,$\displaystyle \lim_{n \to \infty} l_n=[セ]$となる.
早稲田大学 私立 早稲田大学 2015年 第5問
$a>0$とする.$xy$平面上に点$\mathrm{A}(-\sqrt{2}a,\ 0)$,$\mathrm{B}(\sqrt{2}a,\ 0)$を固定する.動点$\mathrm{P}(x,\ y)$は条件$\mathrm{AP}+\mathrm{BP}=4a$をみたすものとする.次の問に答えよ.

(1)点$\mathrm{P}$の軌跡として得られる曲線の方程式を求めよ.ただし,答のみでよい.
(2)$(1)$の曲線の$-\sqrt{2}a \leqq x \leqq \sqrt{2}a$の部分と,直線$x=-\sqrt{2}a$,直線$x=\sqrt{2}a$で囲まれる図形を$x$軸のまわりに$1$回転してできる立体を考える.この立体の体積$V$を求めよ.
(3)$(2)$の立体の表面積$S$を求めよ.ここで,$y=f(x)$のグラフの$p \leqq x \leqq q$の部分を$x$軸のまわりに$1$回転してできる曲面の面積は
\[ 2\pi \int_p^q \sqrt{\{f(x)\}^2+\{f(x)f^\prime(x)\}^2} \, dx \]
として計算してよい.
立教大学 私立 立教大学 2015年 第3問
次の条件を満たす数列$\{a_n\}$を考える.
\[ a_1=4,\quad a_{n+1}=\frac{1}{2} \{3+(-1)^n\}a_n-1 \quad (n=1,\ 2,\ \cdots) \]
このとき,次の問に答えよ.

(1)奇数番目の項のみからなる数列を$\{b_n\}$,偶数番目の項のみからなる数列を$\{c_n\}$とする.つまり,$b_n=a_{2n-1}$,$c_n=a_{2n}$とする.$b_{n+1}$,$c_n$,$b_n$が次の関係式を満たすとき,定数$A,\ B,\ C,\ D$の値をそれぞれ求めよ.
\[ \begin{array}{r}
b_{n+1}=Ac_n+B \\
\phantom{\frac{[ ]}{2}} c_n=Cb_n+D
\end{array} \qquad (n=1,\ 2,\ \cdots) \]
(2)$(1)$において$c_n$を消去し,$b_{n+1}$を$b_n$を用いて表せ.
(3)数列$\{b_n\}$,$\{c_n\}$の一般項をそれぞれ$n$を用いて表せ.
(4)数列$\{a_n\}$の第$1$項から第$2k$項までの和$S_{2k}$を$k$を用いて表せ.
中央大学 私立 中央大学 2015年 第1問
次の各問いに答えよ.

(1)次の式を因数分解せよ.
\[ 2x^3+15x^2+6x-7 \]
(2)次の不等式を解け.
\[ 2^{2x}-2^{x+2}-32>0 \]
(3)赤玉$3$個,白玉$2$個,青玉$2$個を$1$列に並べるとき,並べ方は何通りあるか.
(4)次の値を求めよ.
\[ 8^{\log_2 5} \]
(5)次の条件をすべてみたす$2$次関数$f(x)$を求めよ.
\[ f(0)=2,\quad f^\prime(0)=-5,\quad f^\prime(1)=1 \]
(6)次の定積分の値を求めよ.
\[ \int_{-1}^2 (2x^2-4x+3) \, dx \]
スポンサーリンク

「条件」とは・・・

 まだこのタグの説明は執筆されていません。