タグ「条件」の検索結果

14ページ目:全636問中131問~140問を表示)
信州大学 国立 信州大学 2015年 第2問
放物線$y=ax^2+bx+c (a>0)$を$C$とし,直線$y=2x-1$を$\ell$とする.

(1)放物線$C$が点$(1,\ 1)$で直線$\ell$と接し,かつ$x$軸と共有点をもつための$a,\ b,\ c$が満たす必要十分条件を求めよ.
(2)$\displaystyle a=\frac{8}{9}$のとき,$(1)$の条件のもとで,放物線$C$と直線$\ell$および$x$軸とで囲まれた部分のうち,第$1$象限にある部分の面積を求めよ.
信州大学 国立 信州大学 2015年 第6問
次の条件$(*)$を満たすような実数$a$で最大のものを求めよ.

\mon[$(*)$] $\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$の範囲のすべての$x$に対して$\cos x \leqq 1-ax^2$が成り立つ.
信州大学 国立 信州大学 2015年 第1問
放物線$y=ax^2+bx+c (a>0)$を$C$とし,直線$y=2x-1$を$\ell$とする.

(1)放物線$C$が点$(1,\ 1)$で直線$\ell$と接し,かつ$x$軸と共有点をもつための$a,\ b,\ c$が満たす必要十分条件を求めよ.
(2)$\displaystyle a=\frac{8}{9}$のとき,$(1)$の条件のもとで,放物線$C$と直線$\ell$および$x$軸とで囲まれた部分のうち,第$1$象限にある部分の面積を求めよ.
信州大学 国立 信州大学 2015年 第5問
次の条件$(*)$を満たすような実数$a$で最大のものを求めよ.

\mon[$(*)$] $\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$の範囲のすべての$x$に対して$\cos x \leqq 1-ax^2$が成り立つ.
愛知教育大学 国立 愛知教育大学 2015年 第4問
放物線$y=x^2+ax+b$により,$xy$平面を$2$つの領域に分割する.以下の問いに答えよ.

(1)点$(-1,\ 4)$と点$(2,\ 8)$が放物線上にはなく別々の領域に属するような$a,\ b$の条件を求めよ.さらに,その条件を満たす$(a,\ b)$の領域を$ab$平面に図示せよ.
(2)$a,\ b$が$(1)$で求めた条件を満たすとき,$a^2+b^2$がとり得る値の範囲を求めよ.
愛知教育大学 国立 愛知教育大学 2015年 第7問
$1$辺の長さが$4$の正四面体$\mathrm{OABC}$がある.点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$をそれぞれ辺$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{OC}$上の点とし,$\mathrm{OP}$,$\mathrm{OQ}$,$\mathrm{OR}$の長さをそれぞれ$a,\ b,\ b$(ただし,$0<a<4$,$0<b<4$)とする.

(1)$\cos \angle \mathrm{QPR}$を$a,\ b$を用いて表せ.
(2)$b=2$とし,点$\mathrm{P}$は$\angle \mathrm{QPR}$の大きさを最大にする点とする.このとき,$a$の値を求めよ.
(3)$(2)$の条件のもとで,$\triangle \mathrm{PQR}$の面積を求めよ.
島根大学 国立 島根大学 2015年 第1問
$t$を$0<t<1$をみたす実数とする.$xy$平面上の$3$点$\mathrm{A}(-1,\ 1)$,$\mathrm{B}(0,\ -1)$,$\mathrm{C}(1,\ 1)$に対し,線分$\mathrm{AB}$を$t:1-t$に内分する点を$\mathrm{P}$とし,線分$\mathrm{BC}$を$t:1-t$に内分する点を$\mathrm{Q}$とする.さらに,線分$\mathrm{PQ}$を$t:1-t$に内分する点を$\mathrm{R}$とし,点$\mathrm{P}$と点$\mathrm{Q}$を通る直線を$\ell$とする.このとき,次の問いに答えよ.

(1)点$\mathrm{R}$の座標を$t$を用いて表せ.
(2)直線$\ell$が曲線$y=x^2$の点$\mathrm{R}$における接線であることを示せ.
(3)$t$が条件$0<t<1$をみたしながら変化するとき,直線$\ell$が通過する領域を図示せよ.
宇都宮大学 国立 宇都宮大学 2015年 第5問
微分可能な関数$f(x)$は,$2$つの条件$f^\prime(x)=xe^x$,$f(1)=0$を満たしている.このとき,次の問いに答えよ.

(1)関数$f(x)$を求めよ.
(2)すべての$x$に対して次の等式を満たす関数$g(x)$を求めよ.
\[ g(x)=f(x)+\frac{(2-x)e^x}{e-1} \int_0^1 g(t) \, dt \]
(3)$g(x)$を$(2)$で求めた関数とし,$k$を定数とする.$x$についての方程式$g(x)=kx$の異なる実数解の個数を調べよ.ただし,$\displaystyle \lim_{x \to \infty} \frac{e^x}{x}=\infty$を用いてよい.
電気通信大学 国立 電気通信大学 2015年 第3問
次の関数$f(x),\ g(x)$に対して,以下の問いに答えよ.ただし,$\log x$は$e$を底とする自然対数を表す.
\[ f(x)=\frac{x+1}{\sqrt{x^2+1}},\quad g(x)=\log (x+\sqrt{x^2+1}) \]

(1)極限値$\displaystyle \lim_{x \to \infty} f(x),\ \lim_{x \to -\infty} f(x)$をそれぞれ求めよ.
(2)導関数$f^\prime(x)$を求め,関数$f(x)$の増減を調べよ.さらに,$f(x)$の最大値を求めよ.
(3)次の方程式がただ$1$つの実数解を持つような定数$m$の条件を求めよ.
\[ m \sqrt{x^2+1}=x+1 \]
(4)導関数$g^\prime(x)$を求めよ.さらに,$xy$平面上において,曲線$y=f(x)$,$x$軸および$y$軸で囲まれた図形を$D$とする.図形$D$の面積$S$を求めよ.
(5)図形$D$を$x$軸のまわりに$1$回転させてできる立体の体積$V$を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2015年 第2問
図$1$が示すように,平面上に互いに異なる$5$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$がある.ただし,$\mathrm{O}$は原点であり,他の$4$点の位置ベクトルを$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$,$\overrightarrow{d}=\overrightarrow{\mathrm{OD}}$とする.媒介変数$t (0 \leqq t \leqq 1)$を用いて,線分$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CD}$を$t:1-t$に内分する点をそれぞれ$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$とする.同様に,線分$\mathrm{EF}$,$\mathrm{FG}$を$t:1-t$に内分する点をそれぞれ$\mathrm{H}$,$\mathrm{I}$とする.さらに,線分$\mathrm{HI}$を$t:1-t$に内分する点を$\mathrm{J}$とし,$t$が$0$から$1$まで変化するときの点$\mathrm{J}$の軌跡を曲線$K$とする(図$1$参照).以下の問いに答えよ.
(図は省略)

(1)$\overrightarrow{a},\ \overrightarrow{b}$および$t$を用いて位置ベクトル$\overrightarrow{\mathrm{OE}}$を表せ.
(2)$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c},\ \overrightarrow{d}$および$t$を用いて位置ベクトル$\overrightarrow{\mathrm{OJ}}$を表せ.
(3)特殊な条件として,一辺が$r$の正方形上に図$2$に示すように点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$を配置する.さらに,中心が$\mathrm{O}$で端点を$\mathrm{A}$,$\mathrm{D}$とする円弧を$L$とする.線分$\mathrm{AB}$と線分$\mathrm{CD}$の長さはともに半径$r$の$s$倍($0 \leqq s \leqq 1$)である.このとき,$\overrightarrow{a}$,$\overrightarrow{d}$および$s$を用いてベクトル$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{b}$,$\overrightarrow{c}$を表せ.
(4)$(3)$において,$\displaystyle t=\frac{1}{2}$のときの点$\mathrm{J}$に対応する点を特に点$\mathrm{M}$とするとき,点$\mathrm{M}$が円弧$L$上にあるための条件を$s$の値で示せ.
スポンサーリンク

「条件」とは・・・

 まだこのタグの説明は執筆されていません。