タグ「条件付き確率」の検索結果

1ページ目:全11問中1問~10問を表示)
熊本大学 国立 熊本大学 2016年 第2問
$1$つのさいころを$3$回投げる.$1$回目に出る目の数,$2$回目に出る目の数,$3$回目に出る目の数をそれぞれ$X_1,\ X_2,\ X_3$とし,$5$つの数
\[ 2,\quad 5,\quad 2-X_1,\quad 5+X_2,\quad X_3 \]
からなるデータを考える.以下の問いに答えよ.

(1)データの範囲が$7$以下である確率を求めよ.
(2)$X_3$がデータの中央値に等しい確率を求めよ.
(3)$X_3$がデータの平均値に等しい確率を求めよ.
(4)データの中央値と平均値が一致するとき,$X_3$が中央値に等しい条件付き確率を求めよ.
東京大学 国立 東京大学 2016年 第2問
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$つのチームが参加する野球の大会を開催する.以下の方式で試合を行い,$2$連勝したチームが出た時点で,そのチームを優勝チームとして大会は終了する.

(i) $1$試合目で$\mathrm{A}$と$\mathrm{B}$が対戦する.
(ii) $2$試合目で,$1$試合目の勝者と,$1$試合目で待機していた$\mathrm{C}$が対戦する.
(iii) $k$試合目で優勝チームが決まらない場合は,$k$試合目の勝者と,$k$試合目で待機していたチームが$k+1$試合目で対戦する.ここで$k$は$2$以上の整数とする.

なお,すべての対戦において,それぞれのチームが勝つ確率は$\displaystyle \frac{1}{2}$で,引き分けはないものとする.

(1)$n$を$2$以上の整数とする.ちょうど$n$試合目で$\mathrm{A}$が優勝する確率を求めよ.
(2)$m$を正の整数とする.総試合数が$3m$回以下で$\mathrm{A}$が優勝したとき,$\mathrm{A}$の最後の対戦相手が$\mathrm{B}$である条件付き確率を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2016年 第4問
赤球,白球合わせて$2$個以上入っている袋に対して,次の操作$(*)$を考える.


\mon[$(*)$] 袋から同時に$2$個の球を取り出す.取り出した$2$個の球が同じ色である場合は,その色の球を$1$個だけ袋に入れる.

赤球$3$個と白球$2$個が入っている袋に対して一度操作$(*)$を行い,その結果得られた袋に対してもう一度操作$(*)$を行った後に,袋に入っている赤球と白球の個数をそれぞれ$r,\ w$とする.

(1)赤球$3$個と白球$2$個が入っている袋から$2$個の球を取り出すとき,取り出した赤球の個数が$k$である確率を$p_k$とする.$p_0,\ p_1,\ p_2$の値を求めよ.
(2)$r=w$となる確率を求めよ.
(3)$r>w$となる確率を求めよ.
(4)$r>w$であったときの$r+w=2$となる条件付き確率を求めよ.
名城大学 私立 名城大学 2016年 第1問
次の$[ア]$~$[エ]$に数を入れよ.

(1)$2$つのさいころを投げ,出た目が両方とも奇数である事象を$A$,出た目の和が$4$の倍数である事象を$B$とする.このとき,$A$または$B$が起こる確率は$[ア]$であり,$B$が起きたときの$A$が起こる条件付き確率は$[イ]$である.
(2)$p$を定数とする.$x$の$1$次式$f(x)$が,
\[ xf(x+1)=p \int_1^x (x+t)f^\prime(t) \, dt+1 \]
を満たしているとき,$p=[ウ]$である.また,$\displaystyle \int_0^2 |f(x)| \, dx$の値は$[エ]$である.
京都薬科大学 私立 京都薬科大学 2016年 第1問
次の$[ ]$にあてはまる数または式を記入せよ.ただし,$[コ]$においては,$[コ]$につづくかっこ内の選択肢から適切なものを$\mathrm{A}$か$\mathrm{B}$の記号で答えよ.

(1)$2$つの円$x^2+y^2=1$,$(x-2)^2+y^2=R^2 (R>0)$が異なる$2$つの交点を持つのは$[ア]<R<[イ]$が成立するときである.このとき,$\mathrm{O}(0,\ 0)$,$\mathrm{A}(2,\ 0)$とおき,交点の$1$つを$\mathrm{P}$とすると
\[ \cos \angle \mathrm{OPA}=[ウ] \]
が成立するので,$\angle \mathrm{OPA}={90}^\circ$となるのは$R=[エ]$のときである.
(2)$x$の$2$次方程式$x^2-4x \sin \theta+4+\sqrt{2}-(2+2 \sqrt{2}) \cos \theta=0 (0 \leqq \theta<2\pi)$が異なる$2$つの実数解を持つような$\theta$の範囲は,$[オ]<\theta<[カ]$および$[キ]<\theta<[ク]$である.
(3)$p$と$q$を正の整数とするとき,$x$の$2$次方程式$x^2-2 \sqrt{p}x+q=0$は異なる$2$つの実数解を持つとする.これらの解を$\alpha$と$\beta$で表すとき,$r=|\alpha-\beta|$と$p,\ q$の間には,関係式$r^2=[ケ]$が成り立つ.したがって,もし$r$が整数ならば,$r$は$[コ]$($\mathrm{A}:$偶数,$\mathrm{B}:$奇数)である.このとき,$2$次方程式の解を$q$と$r$を用いてあらわすと$x=[サ] \pm [シ]$となる.
(4)$1$つのサイコロを$2$回続けて投げるとき,$1$回目に出る目を$a$,$2$回目に出る目を$b$とし,$x$の$2$次方程式$x^2-ax+b=0 \ \cdots\ ①$を考える.$2$次方程式$①$が実数解を持たない確率は$[ス]$である.$2$次方程式$①$が実数解を持つとき,それが重解である条件付き確率は$[セ]$である.$2$次方程式$①$の解が$2$つとも自然数になる確率は$[ソ]$である.
(5)$3^{10}={10}^x$となる$x$は$[タ]$である.よって,$3^{10}$は$[チ]$桁の$10$進数である.同様の考え方で$5^{10}$を$9$進数で表すと,$[ツ]$桁である.ただし,$\log_{10}3=0.4771$,$\log_{10}5=0.6990$とする.
福岡大学 私立 福岡大学 2016年 第1問
次の$[ ]$をうめよ.

(1)$4$次方程式$x^4-x^3+ax^2+bx+2=0$が$1$と$-2$を解にもつとき,係数$a,\ b$の値を求めると$(a,\ b)=[ ]$である.また,この方程式の他の解を求めると,$[ ]$である.
(2)袋の中に$1$から$13$までの数が$1$つずつ書かれた$13$個の玉が入っている.この袋の中から,$2$個の玉を同時にとり出す.このとき,とり出した玉に書かれた$2$つの数の和が偶数になる確率は$[ ]$である.また,とり出した玉に書かれた数がどちらも$10$以下であったとき,数の和が偶数である条件付き確率は$[ ]$である.
(3)$3$点$\mathrm{A}(1,\ -1,\ 1)$,$\mathrm{B}(2,\ 1,\ -1)$,$\mathrm{C}(4,\ -5,\ 1)$がある.$2$つのベクトル$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$のなす角を$\theta$とするとき,$\cos \theta$の値を求めると$\cos \theta=[ ]$である.また,$\triangle \mathrm{ABC}$の面積は$[ ]$である.
北海道大学 国立 北海道大学 2015年 第4問
初めに赤玉$2$個と白玉$2$個が入った袋がある.その袋に対して以下の試行を繰り返す.

(i) まず同時に$2$個の玉を取り出す.
(ii) その$2$個の玉が同色であればそのまま袋に戻し,色違いであれば赤玉$2$個を袋に入れる.
(iii) 最後に白玉$1$個を袋に追加してかき混ぜ,$1$回の試行を終える.
$n$回目の試行が終わった時点での袋の中の赤玉の個数を$X_n$とする.

(1)$X_1=3$となる確率を求めよ.
(2)$X_2=3$となる確率を求めよ.
(3)$X_2=3$であったとき,$X_1=3$である条件付き確率を求めよ.
札幌医科大学 公立 札幌医科大学 2015年 第2問
$p$を$0 \leqq p \leqq 1$をみたす実数とする.$1$個の白玉と$3$個の赤玉が入っている袋があり,この袋から$1$個の玉を取り出して,取り出した玉に新たに白か赤の玉を$1$個加えて袋に戻す試行を行う.ただし,この試行の際に加えられる新たな玉の色は
\begin{itemize}
確率$p$で取り出した玉と同じ色
確率$1-p$で取り出した玉と異なる色
\end{itemize}
とする.

例えば,$p=1$の場合,第$1$回目の試行において赤玉が取り出されると,取り出した赤玉に加えてもう一つ赤玉を袋に戻す.そして第$1$回目の試行が終わったときには,袋の中に$1$個の白玉と$4$個の赤玉が入っている.
第$n$回目の試行で白玉が取り出される確率を$q_n$とする.

(1)第$n$回目の試行で新たに加えられた玉が白玉であり,かつこの白玉が$n+1$回目の試行で取り出される確率を$n,\ p,\ q_n$を用いて表せ.
(2)$q_{n+1}$を$n,\ p,\ q_n$を用いて表せ.ただし$n+1$回目の試行において,$n$回目に入れた玉を取り出さないという条件の下で,$n+1$回目に白玉を取り出す条件つき確率が$q_n$と等しいことを用いてよい.
(3)$\displaystyle r_n=q_n-\frac{1}{2}$とおくとき,$r_{n+1}$を$n,\ p,\ r_n$を用いて表せ.
(4)$p=0$,$\displaystyle p=\frac{1}{2}$,$p=1$のときの$q_n$をそれぞれ$n$を用いて表せ.
浜松医科大学 国立 浜松医科大学 2013年 第3問
さいころを$4$回投げて,$k$回目($k=1,\ 2,\ 3,\ 4$)に出る目の数を$X_k$とする.$1$から$6$までの目は等確率で出るものとするとき,以下の問いに答えよ.

(1)$j,\ k \ (j<k)$は数の集合$\{1,\ 2,\ 3,\ 4\}$を動くものとする.$X_1,\ X_2,\ X_3,\ X_4$の中で,$X_j=X_k$となる組$\{j,\ k\}$が少なくとも$1$つ存在する事象を$A$,$X_j=X_k$となる組$\{j,\ k\}$がただ$1$つ存在する事象を$B$,同じ目がちょうど$3$つ出る事象を$C$とする.確率$P(A)$,$P(B)$,$P(C)$をそれぞれ求めよ.
(2)$A$が起こったときの和事象$B \cup C$の条件つき確率$P_A(B \cup C)$を求めよ.
(3)$X_1,\ X_2,\ X_3,\ X_4$の値を小さい順に並べ替えて,$X_{(1)} \leqq X_{(2)} \leqq X_{(3)} \leqq X_{(4)}$を定める.例えば,$X_1=3,\ X_2=2,\ X_3=6,\ X_4=2$の場合,$X_{(1)}=2,\ X_{(2)}=2,\ X_{(3)}=3,\ X_{(4)}=6$である.確率$P(X_{(1)}=4)$と$P(X_{(1)}=X_{(2)}=4)$をそれぞれ求めよ.
浜松医科大学 国立 浜松医科大学 2012年 第4問
$1$個のさいころを$3$回投げる.$1$回目,$2$回目,$3$回目に出る目の数をそれぞれ$X_1,\ X_2,\ X_3$として,$3$つの確率変数
\[ Y=4X_1+X_2,\quad Z_1=2X_1+3X_2,\quad Z_2=2X_1+3X_3 \]
を定める.$1$から$6$までの目は等確率で出るものとするとき,以下の問いに答えよ.

(1)数の集合$U=\{x \;|\; x \text{は整数かつ}5 \leqq x \leqq 30 \}$を全体集合として,
\[ \begin{array}{l}
\displaystyle S=\left\{ x \;\bigg|\; x \in U \text{かつ} P(Y=x)>\frac{1}{36} \right\} \\ \\
\displaystyle T=\left\{ x \;\bigg|\; x \in U \text{かつ} P(Z_1=x)>\frac{1}{36} \right\}
\end{array} \]
を定める.部分集合$S$と$T$の要素をそれぞれ列挙せよ.
(2)$Y$の値が$S$に属するという事象を$A$とし,$i=1,\ 2$に対して$Z_i$の値が$T$に属するという事象を$B_i$とする.次の問いに答えよ.

(i) $i=1,\ 2$に対し,等式$P(A \cap B_i)=P(A)P(B_i)$が成り立つかどうか,それぞれ調べよ.
(ii) 条件つき確率$P_A(B_1 \cap B_2)$の定義式をかき,その値を求めよ.
スポンサーリンク

「条件付き確率」とは・・・

 まだこのタグの説明は執筆されていません。