タグ「最小」の検索結果

4ページ目:全521問中31問~40問を表示)
愛媛大学 国立 愛媛大学 2016年 第1問
次の問いに答えよ.

(1)$a,\ b$を正の実数とする.楕円$\displaystyle \frac{x^2}{4}+y^2=1$を$x$軸方向に$a$,$y$軸方向に$b$だけ平行移動して得られる楕円が$y$軸と直線$y=x$に接するような$a,\ b$を求めよ.
(2)$1$辺の長さが$\sqrt{n}$の正$n$角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_n$における三角形$\mathrm{A}_1 \mathrm{A}_2 \mathrm{A}_3$の面積を$S_n$とする.このとき$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
(3)$a,\ b$は実数で$a>0$を満たすとする.放物線$\displaystyle y=\frac{1}{2a^2}x^2$と曲線$y=\log x+b$がただ$1$つの共有点$\mathrm{P}$をもつとき,$\mathrm{P}$の座標および$b$を$a$を用いて表せ.

(4)$1 \leqq x \leqq 2$とする.関数$\displaystyle f(x)=\int_1^2 \frac{|t-x|}{t^2} \, dt$を最小にする$x$の値を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2016年 第3問
$xy$平面上において,媒介変数$\theta (0 \leqq \theta \leqq \pi)$によって$x=a(2 \cos \theta+\cos 2\theta+1)$,$y=a(2 \sin \theta+\sin 2\theta)$と表される下図の曲線について考える.ただし,$a$は正の定数とする.以下の問いに答えよ.

(1)$\displaystyle \frac{dx}{d\theta},\ \frac{dy}{d\theta}$を求めよ.
(2)$x$が最大となる点を点$\mathrm{A}$,$y$が最大となる点を点$\mathrm{B}$,$x$が最小となる点を点$\mathrm{C}$と定める.このとき,点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標および各点での媒介変数$\theta$の値を求めよ.
(3)曲線と$x$軸で囲まれる図形の面積を求めよ.
(図は省略)
長崎大学 国立 長崎大学 2016年 第1問
半径$1$の円に内接する正十二角形$D$がある.その面積を$S$とする.$D$の各辺の中点を順に結んで正十二角形$D_1$をつくる.さらに,$D_1$の各辺の中点を結んで正十二角形$D_2$をつくる.このように,$D_{n−1}$の各辺の中点を順に結んで正十二角形$D_n$をつくる($n \geqq 2$).$D_n$の面積を$S_n$とする.以下の問いに答えよ.

(1)$S$と$S_1$を求めよ.
(2)$S_n$を$n$の式で表せ($n \geqq 1$).
(3)$\displaystyle S_n \leqq \frac{1}{2}S$となる最小の整数$n$を求めよ.ただし,
\[ 1.89<\log_2(2+\sqrt{3})<1.9 \]
である.
愛媛大学 国立 愛媛大学 2016年 第3問
$z_0$を虚数単位$i$と異なる複素数とする.複素数$z_n$を
\[ z_n=i+\frac{\sqrt{2}(z_{n-1}-i)(1+i)}{2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.

(1)すべての自然数$n$に対し$z_n \neq i$であることを示せ.
(2)$\displaystyle \frac{z_n-i}{z_{n-1}-i}$の絶対値$r$と偏角$\theta$を求めよ.ただし,$\theta$の範囲は$0 \leqq \theta<2\pi$とする.
(3)$z_m=z_0$となる最小の自然数$m$を求めよ.
(4)複素数平面上において$z_n$の表す点を$\mathrm{P}_n$とする.$(3)$で求めた$m$に対し$m$本の線分$\mathrm{P}_0 \mathrm{P}_1$,$\mathrm{P}_1 \mathrm{P}_2$,$\cdots$,$\mathrm{P}_{m-1} \mathrm{P}_m$で囲まれる図形の面積を$S$とする.$z_0=1-i$のとき$S$の値を求めよ.
帯広畜産大学 国立 帯広畜産大学 2016年 第1問
原点$\mathrm{O}(0,\ 0)$を中心とする半径$1$の円$C$上に点$\mathrm{P}$をとり,点$\mathrm{P}$における円$C$の接線$L$の方程式を$y=ax+b$とする.接線$L$は,$x$軸と点$\mathrm{A}$で,$y$軸と点$\mathrm{B}$で交わり,$\triangle \mathrm{AOB}$の面積を$S$とする.また,$x$軸の正の向きを始線とし,それと直線$\mathrm{OP}$のなす正の角を$\theta$で表す.ただし,
\[ a>0,\quad b>0 \quad \cdots\cdots \quad (*) \]
とする.次の各問に答えなさい.

(1)$(ⅰ)$ 直線$\mathrm{OP}$の傾きを$a$を用いて表しなさい.
$(ⅱ)$ $a,\ b$を$\sin \theta$を用いて表しなさい.
$(ⅲ)$ $S$を$\sin 2\theta$を用いて表しなさい.
(2)$\displaystyle \theta=\frac{2 \pi}{3}$とする.
$(ⅰ)$ $a,\ b,\ S$の値をそれぞれ求めなさい.
$(ⅱ)$ 点$\mathrm{A}$と点$\mathrm{B}$の座標を求めなさい.
$(ⅲ)$ $\tan 2\theta$の値を求めなさい.
(3)$\theta<2\pi$とする.$S$が最小になるとき,条件$(*)$の下で$\theta$と$S$のそれぞれの値を求めなさい.
(4)$\theta<200 \pi$とする.$S$が最小になるとき,条件$(*)$の下で$\theta$がとりうるすべての値の和を$\pi$を用いて表しなさい.
愛媛大学 国立 愛媛大学 2016年 第1問
次の問いに答えよ.

(1)$2m^2-n^2-mn-m+n=18$を満たす自然数$m,\ n$を求めよ.
(2)$\displaystyle 0<\theta<\frac{\pi}{2}$のとき$\displaystyle \log_{\cos \theta} \left( \tan^2 \theta+\frac{\tan \theta}{\cos \theta}+\frac{1}{3} \right)=-2$を満たす$\theta$を求めよ.
(3)袋の中に$1,\ 2,\ 3,\ 4,\ 5$の数字が$1$つずつ書かれた$5$個の玉が入っている.$5$人が順にこの袋の中から玉を$1$個ずつ取り出し,玉に書かれた数字を記録する.この操作が終了したら,すべての玉を袋の中に戻し,同じ操作をもう一度行う.このとき,$1$回目と$2$回目に取り出した玉に書かれた数字が同じであるという人がちょうど$3$人になる確率を求めよ.
(4)$1 \leqq x \leqq 2$とする.関数$\displaystyle f(x)=\int_1^2 |t-x| \, dt$を最小にする$x$の値を求めよ.
愛媛大学 国立 愛媛大学 2016年 第2問
次の問いに答えよ.

(1)$a,\ b$を正の実数とする.楕円$\displaystyle \frac{x^2}{4}+y^2=1$を$x$軸方向に$a$,$y$軸方向に$b$だけ平行移動して得られる楕円が$y$軸と直線$y=x$に接するような$a,\ b$を求めよ.
(2)$1$辺の長さが$\sqrt{n}$の正$n$角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_n$における三角形$\mathrm{A}_1 \mathrm{A}_2 \mathrm{A}_3$の面積を$S_n$とする.このとき$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
(3)$a,\ b$は実数で$a>0$を満たすとする.放物線$\displaystyle y=\frac{1}{2a^2}x^2$と曲線$y=\log x+b$がただ$1$つの共有点$\mathrm{P}$をもつとき,$\mathrm{P}$の座標および$b$を$a$を用いて表せ.

(4)$1 \leqq x \leqq 2$とする.関数$\displaystyle f(x)=\int_1^2 \frac{|t-x|}{t^2} \, dt$を最小にする$x$の値を求めよ.
愛媛大学 国立 愛媛大学 2016年 第1問
次の問いに答えよ.

(1)$2m^2-n^2-mn-m+n=18$を満たす自然数$m,\ n$を求めよ.
(2)$\displaystyle 0<\theta<\frac{\pi}{2}$のとき$\displaystyle \log_{\cos \theta} \left( \tan^2 \theta+\frac{\tan \theta}{\cos \theta}+\frac{1}{3} \right)=-2$を満たす$\theta$を求めよ.
(3)袋の中に$1,\ 2,\ 3,\ 4,\ 5$の数字が$1$つずつ書かれた$5$個の玉が入っている.$5$人が順にこの袋の中から玉を$1$個ずつ取り出し,玉に書かれた数字を記録する.この操作が終了したら,すべての玉を袋の中に戻し,同じ操作をもう一度行う.このとき,$1$回目と$2$回目に取り出した玉に書かれた数字が同じであるという人がちょうど$3$人になる確率を求めよ.
(4)$1 \leqq x \leqq 2$とする.関数$\displaystyle f(x)=\int_1^2 |t-x| \, dt$を最小にする$x$の値を求めよ.
鳥取大学 国立 鳥取大学 2016年 第3問
数列$\{a_n\}$を以下のように定める.
\[ 1^2,\ 1^2+3^2,\ 1^2+3^2+5^2,\ \cdots,\ 1^2+3^2+5^2+\cdots +(2n-1)^2,\ \cdots \]
また,数列$\{b_n\}$を以下のように定める.
\[ 2^2,\ 2^2+4^2,\ 2^2+4^2+6^2,\ \cdots,\ 2^2+4^2+6^2+\cdots +(2n)^2,\ \cdots \]
このとき,以下の問いに答えよ.ただし,$n$は自然数とする.

(1)数列$\{a_n\}$の第$n$項を$n$を用いて表せ.
(2)数列$\{a_n-b_n\}$の第$n$項を$n$を用いて表せ.
(3)$c_n=a_{n+1}-b_n$とおくとき,$c_n>100(n+1)$となる最小の$n$を求めよ.
茨城大学 国立 茨城大学 2016年 第3問
$n$を正の整数とする.座標平面上において,連立不等式
\[ \left\{ \begin{array}{l}
y \geqq x^2 \\
y \leqq x+n(n+1)
\end{array} \right. \]
の表す領域を$D$とする.次の各問に答えよ.

(1)領域$D$内の,$x$座標と$y$座標がともに整数である点のうち,$x$座標が正であるものの個数$M$を$n$を用いて表せ.
(2)領域$D$内の,$x$座標と$y$座標がともに整数である点のうち,$x$座標が負であるものの個数を$N$とする.$(1)$で求めた$M$に対して$M-N \geqq 1000$となるような最小の$n$を求めよ.
スポンサーリンク

「最小」とは・・・

 まだこのタグの説明は執筆されていません。