タグ「最小」の検索結果

37ページ目:全521問中361問~370問を表示)
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
ある企業が毎年$x$リットルの液体製品を製造している.生産するための総費用を$c$,設備の規模を$k$とする.製品1リットルの価格を$p$とし
\[ c= 0.01x^3+0.8x^2+(4-k)x+5k^2 \]
が成り立つとする.このとき利潤は$px-c$である.

(1)$p=15,\ k=1$のとき,$x$が
\[ \frac{[(9)][(10)]}{[(11)][(12)]} \]
のとき利潤は最大となる.
(2)生産量$x$を変えずに,設備の規模$k$を変えて総費用$c$を最小化することを考えると
\[ k=\frac{[(13)][(14)]}{[(15)][(16)]} x \]
である.
(3)$p=19$とし,$k$と$x$は(2)で求めた関係式を満たすとする.このとき$x$が
\[ [(17)][(18)][(19)]+[(20)][(21)]\sqrt{[(22)]} \]
のとき利潤は最大となる.
上智大学 私立 上智大学 2012年 第1問
次の各問いに答えなさい.

(1)関数
\[ f(x) = 2\sqrt{3}\,\sin^2\frac{x}{2}-\sin x+a \quad (0 \leqq x \leqq \pi) \]
の最小値が$\sqrt{3}$であるとする.このとき,$a=[ア]$であり,$f(x)$が最小となるのは$x=\displaystyle\frac{\pi}{[イ]}$のときである.
(2) $n$を$5$以上の自然数とする.$1$以上$n$以下の自然数から互いに隣り合わない$2$つを選ぶ組合せは
\[ \frac{1}{[ウ]} \left( n- [エ]\right) \left( n- [オ] \right) \]
通りあり,どの$2$つも隣り合わない$3$つを選ぶ組合せは
\[ \frac{1}{[カ]} \left( n- [キ]\right) \left( n- [ク] \right) \left( n- [ケ] \right) \]
通りある.ただし,$[エ] < [オ], \quad [キ] < [ク] < [ケ]$とする.
(3)三角形$\mathrm{OAB}$において,辺$\mathrm{OA}$を$1:3$に内分する点を$\mathrm{C}$,辺$\mathrm{OB}$を$4:3$に内分する点を$\mathrm{D}$とし,線分$\mathrm{AD}$と$\mathrm{BC}$の交点を$\mathrm{P}$とする.$\mathrm{AP}:\mathrm{PD}=s:(1-s)$,$\mathrm{BP}:\mathrm{PC}=t:(1-t)$とするとき
\[ \displaystyle s=\frac{[コ]}{[サ]}, \quad t=\frac{[シ]}{[ス]} \]
である.また,$\mathrm{OP}$の延長と辺$\mathrm{AB}$との交点を$\mathrm{Q}$とするとき
\[ \overrightarrow{\mathrm{OQ}} = \frac{[セ]}{[ソ]} \overrightarrow{\mathrm{OP}} \]
である.
早稲田大学 私立 早稲田大学 2012年 第4問
円$C$とその内部の点$\mathrm{P}_0$が与えられている.初め$\mathrm{P}_0$にある動点が,円周上の点$\mathrm{P}_1$まで線分$\mathrm{P}_0 \mathrm{P}_1$上を動き,$\mathrm{P}_1$からは,$\mathrm{P}_1$における円$C$の接線$\ell_1$と線分$\mathrm{P}_0 \mathrm{P}_1$のなす角が$\ell_1$と線分$\mathrm{P}_1 \mathrm{P}_2$のなす角に等しくなるように向きを変えて,円周上の点$\mathrm{P}_2$まで線分$\mathrm{P}_1 \mathrm{P}_2$上を動く(図例$1$).以下,自然数$n$について,円周上の点$\mathrm{P}_n$に至ったあとは,$\mathrm{P}_n$における円$C$の接線$\ell_n$と線分$\mathrm{P}_{n-1} \mathrm{P}_n$のなす角が$\ell_n$と線分$\mathrm{P}_n \mathrm{P}_{n+1}$のなす角に等しくなるように向きを変え,円周上の点$\mathrm{P}_{n+1}$まで線分$\mathrm{P}_n \mathrm{P}_{n+1}$上を動き,この動きをくり返す(図例$2$).線分$\mathrm{P}_0 \mathrm{P}_1$と接線$\ell_1$のなす角を$\alpha (\displaystyle 0 \leqq \alpha \leqq \frac{\pi}{2})$とする.

(1)$\mathrm{P}_m=\mathrm{P}_1$となる$3$以上の自然数$m$が存在するような角$\alpha$をすべて決定せよ.
(2)点$\mathrm{P}_1$の位置によって角$\alpha$は変化し得る.角$\alpha$が最大となる$\mathrm{P}_1$の位置,および最小となる$\mathrm{P}_1$の位置を求めよ.
(3)$\mathrm{P}_4=\mathrm{P}_1$となる点$\mathrm{P}_1$がとれるような点$\mathrm{P}_0$の存在範囲を求めよ.
(図は省略)
明治大学 私立 明治大学 2012年 第1問
次の各設問の$[1]$から$[9]$までの空欄にあてはまる数値を入れよ.

(1)関数$\displaystyle y=3 \sin \left( 2x- \frac{2}{3} \pi \right)$のグラフは$y=3 \sin 2x$のグラフを$x$軸方向に$[1]$だけ平行移動したものであり,その正で最小の周期は$[2]$である.
(2)座標平面上の$\triangle \mathrm{ABC}$において,線分$\mathrm{AB}$を$2:1$に内分する点$\mathrm{P}$の座標が$(1,\ 5)$,線分$\mathrm{AC}$を$4:1$に外分する点$\mathrm{Q}$の座標が$(3,\ -3)$,$\triangle \mathrm{ABC}$の重心の座標が$(0,\ 2)$であるとき,点$\mathrm{A}$の座標は$([3],\ [4])$である.
(3)関数$\displaystyle y=\left( \log_3 \frac{x}{9} \right)^3 + 6\log_{\frac{1}{3}} \sqrt{3x} (1 \leqq x \leqq 27)$の最小値は$[5]$,最大値は$[6]$である.また,最大値$[6]$をとるときの$x$は$[7]$である.
(4)水を満たしたある容器の底に穴を開けてから$x$分後における容器内の水深を$y$メートルとすると,$y$は次式で表される.ただし,$0 \leqq x \leqq 90$とする.
\[ y = 0.9 \times 10^{-4}x^2 - 1.8\times 10^{-2} x +1 \]
$x_1$分から$x_2$分の間に,容器から出た水の量を$\int_{x_1}^{x_2} y\, dx$とする.最初の$1$分間($x_1=0,\ x_2=1$)に出た水の量に対する$5$分から$6$分の間($x_1=5,\ x_2=6$)に出た水の量の割合は約$[8] \%$である.容器内の水深$y$が,$x=0$のときの半分になるのは約$[9]$分後である.
上智大学 私立 上智大学 2012年 第1問
次の各問に答えよ.

(1)$5$個の数字$0,\ 1,\ 2,\ 3,\ 4$を重複なく使ってできる$5$桁の整数を小さい方から順に並べたとき,$70$番目の数を$100$で割った余りは$[ア]$である.
(2)$\displaystyle 16^{\log_2 3}=[イ]$である.
(3)$m^n=1024$を満たす自然数の組$(m,\ n)$は$[ウ]$通りある.その中で最小の$m$は$[エ]$,最小の$n$は$[オ]$である.
(4)$x$の式$(1+x+ax^2)^6$を展開したときの$x^4$の係数は,$a=[カ]$のときに最小値$[キ]$をとる.
明治大学 私立 明治大学 2012年 第3問
次の空欄$[ア]$から$[キ]$に当てはまるものを答えよ.ただし,自然数とは$1$以上の整数のことである.

行列$A,\ B,\ E$を$A=\left( \begin{array}{rr}
1 & 0 \\
0 & -1
\end{array} \right)$,$B=\left( \begin{array}{rr}
0 & -1 \\
1 & 0
\end{array} \right)$,$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$とする.

$M_0=E$とし,さいころをふって偶数が出れば$A$を左からかけ,奇数が出れば$B$を左からかける操作を$n$回繰り返すことにより行列$M_n$を定める.つまり,
\begin{itemize}
$n$回目に偶数が出たら$M_n=AM_{n-1}$,
$n$回目に奇数が出たら$M_n=BM_{n-1}$
\end{itemize}
と順々に$M_n (n=1,\ 2,\ 3,\ \cdots)$を定める.$M_n=A$となる確率を$p_n$とする.

(1)$p_1=[ア]$である.
(2)$A^a=E$をみたす最小の自然数$a$は$[イ]$である.$B^b=E$をみたす最小の自然数$b$は$[ウ]$である.$BA=AB^c$をみたす最小の自然数$c$は$[エ]$である.
(3)$M_0,\ M_1,\ M_2,\ \cdots$の中で相異なる行列は最大$[オ]$個である.
(4)$n$が偶数のときは$p_n=[カ]$であり,$n$が$3$以上の奇数のときは$p_n=[キ]$である.
上智大学 私立 上智大学 2012年 第2問
直線$y=x-1$上の点$\mathrm{A}(a,\ a-1)$を通り,放物線$y=x^2$に接する直線を,$\ell,\ m$とする.ただし,$\ell$の方が$m$よりも傾きが大きいものとする.

(1)直線$\ell$の傾きを$a$で表すと
\[ [キ]\left( a+\sqrt{a^2+[ク]a+[ケ]} \right) \]
である.
(2)直線$\ell,\ m$と放物線$y=x^2$との接点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする,線分$\mathrm{PQ}$と放物線$y=x^2$で囲まれた部分の面積$S$を$a$で表すと,
\[ S= \frac{[コ]}{[サ]}\left( a^2 +[シ]a+[ス] \right)^{\frac{3}{2}} \]
であり,$\displaystyle a=\frac{[セ]}{[ソ]}$のとき,$S$は最小値$\displaystyle \frac{\sqrt{[タ]}}{[チ]}$をとる.
(3)放物線$y=x^2$上の点で直線$y=x-1$との距離が最小であるのは$\displaystyle\left( \frac{[ツ]}{[テ]},\ \frac{[ト]}{[ナ]} \right)$で,その距離は$\displaystyle\frac{[ニ]}{[ヌ]}\sqrt{[ネ]}$である.
法政大学 私立 法政大学 2012年 第1問
連立不等式
\[ x+2y \leqq 2a^2+a+3,\quad x \geqq a+1,\quad y \geqq a^2 \]
の表す領域を$D$とおく.ただし,$a$は実数の定数とする.また,点$(x,\ y)$が$D$上を動くときの,$x+y$の最小値を$m$,最大値を$M$とおく.

(1)$a=1$のとき,$D$を図示せよ.さらに,そのときの$m$と$M$の値を求めよ.
(2)$\displaystyle m=\frac{3}{2}$となるような$a$の値を求めよ.
(3)$M$の値が最小となるような$a$の値と,そのときの$M$の値を求めよ.
川崎医療福祉大学 私立 川崎医療福祉大学 2012年 第1問
次の問に答えなさい.

(1)式$8x^2-2x-15$を因数分解すると,
\[ ([$1$]x-[$2$])([$3$]x+[$4$]) \]
となる.
(2)$x$に関する$2$次方程式$2x^2-(2m-3)x-3m=0$が重解を持つとき,$m=[$5$]$である.
(3)$\displaystyle \frac{\sqrt{6}}{\displaystyle\frac{1}{\sqrt{2}}+\displaystyle\frac{1}{\sqrt{3}}} = [$6$] (\sqrt{[$7$]} - \sqrt{[$8$]})$である.

(4)$\displaystyle \frac{3\sqrt{2}-4\sqrt{3}}{\sqrt{2}}$より大きい整数のうち,最小の整数は[$9$]である.
(5)$4$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$を頂点とする長方形の辺$\mathrm{AB}$の長さを$a$とする.さらに$4$点$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$があり,$4$つの三角形$\mathrm{ABE}$,三角形$\mathrm{BCF}$,三角形$\mathrm{CDG}$,三角形$\mathrm{DAH}$はすべて長方形$\mathrm{ABCD}$の外側にある正三角形であるとする.このとき,点$\mathrm{A}$,$\mathrm{E}$,$\mathrm{B}$,$\mathrm{F}$,$\mathrm{C}$,$\mathrm{G}$,$\mathrm{D}$,$\mathrm{H}$,$\mathrm{A}$をこの順に線分で結んでできる図形の周の長さを$L$とする.\\
\quad $L$を一定とするとき,長方形$\mathrm{ABCD}$の面積が最大になるのは$a=[$10$]$のときで,そのときの長方形$\mathrm{ABCD}$の面積は[$11$]である.
東京理科大学 私立 東京理科大学 2012年 第4問
$\mathrm{O}$を原点とする座標空間の$4$点$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(1,\ 1,\ 2)$,$\mathrm{D}(1,\ 1,\ -2)$について,次の各問いに答えよ.また,$0<m<1$とする.

(1)$\mathrm{AB}$を$m:(1-m)$に内分する点を$\mathrm{P}_m$とし,$\mathrm{OP}_m$を$m:1$に内分する点を$\mathrm{Q}_m$とする.このとき,$\mathrm{Q}_{\frac{1}{5}}$の座標は,$\displaystyle \left( \frac{[ラ]}{[リ][ル]},\ \frac{[レ]}{[ロ][ワ]},\ [ヲ] \right)$である.

(2)$\mathrm{OC}$を$m:1$に内分する点を$\mathrm{R}_m$,$\mathrm{AD}$の中点を$\mathrm{M}$とし,$\mathrm{R}_m \mathrm{M}$を$m:(1-m)$に内分する点を$\mathrm{S}_m$とすると,$\mathrm{S}_{\frac{1}{2}}$の座標は,$\displaystyle \left( \frac{[ン][あ]}{[い][う]},\ \frac{[え]}{[お][か]},\ \frac{[き]}{[く]} \right)$である.
(3)$\overrightarrow{\mathrm{CQ}_m}$と$\overrightarrow{\mathrm{OA}}$について,
\[ \overrightarrow{\mathrm{CQ}_m} \cdot \overrightarrow{\mathrm{OA}}=\frac{1}{m+1}(-[け]m^2+[こ]m-[さ]) \]
である.したがって,この$2$つのベクトルは垂直にはなりえない.
(4)$\overrightarrow{\mathrm{CQ}_m}$と$\overrightarrow{\mathrm{AB}}$が垂直となるような$m$の値は,$\displaystyle m=\frac{[し]}{[す]}$である.

(5)$\displaystyle \frac{m+1}{m} \times \mathrm{Q}_m \mathrm{S}_m$が最小となるのは$\displaystyle m=\frac{[せ][そ]}{[た][ち]}$のときであり,その最小値は$\displaystyle \sqrt{\frac{[つ][て]}{[と][な]}}$である.
スポンサーリンク

「最小」とは・・・

 まだこのタグの説明は執筆されていません。