タグ「最小」の検索結果

16ページ目:全521問中151問~160問を表示)
昭和大学 私立 昭和大学 2015年 第2問
以下の各問いに答えよ.

(1)$108$の正の約数について,その個数と全ての約数の総和を求めよ.
(2)ある試行における事象$A,\ B$に対して,$\displaystyle P_A(B)=\frac{1}{2}$,$\displaystyle P_B(A)=\frac{3}{5}$,$\displaystyle P(A \cap B)=\frac{1}{5}$であるとき,$P(A)$,$P(B)$をそれぞれ求めよ.
(3)$12$名の高校生を$6$名,$3$名,$3$名の$3$つのグループに分ける方法は何通りあるか答えよ.
(4)$5$で割ると$3$余り,$7$で割ると$6$余るような自然数のうち,$4$桁で最小のものを求めよ.
大阪工業大学 私立 大阪工業大学 2015年 第4問
関数$f(x)=-x^2+2ax-2a^2+a+2$について,次の問いに答えよ.ただし,$a$は実数とする.

(1)$2$次方程式$f(x)=0$が実数解をもつような$a$の値の範囲を求めよ.
(2)定積分$\displaystyle I=\int_0^a f(x) \, dx$を$a$の式で表せ.
(3)$a$の値が$(1)$で求めた範囲にあるとき,$(2)$で定めた$I$が最小となるような$a$の値を求めよ.
広島経済大学 私立 広島経済大学 2015年 第3問
$\mathrm{AB}=4$,$\mathrm{BC}=1$の長方形$\mathrm{ABCD}$と三角形$\mathrm{APQ}$がある.三角形$\mathrm{APQ}$の頂点$\mathrm{P}$は長方形$\mathrm{ABCD}$の辺$\mathrm{BC}$上に,頂点$\mathrm{Q}$は辺$\mathrm{CD}$上にあり,$\mathrm{CQ}=4 \mathrm{BP} (\mathrm{BP} \neq 0)$を満たしている.三角形$\mathrm{APQ}$の面積を$S$とおいて,次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)$\displaystyle \mathrm{BP}=\frac{1}{4}$のとき,$\displaystyle S=\frac{[$15$]}{[$16$]}$である.

(2)三角形$\mathrm{ABP}$と三角形$\mathrm{ADQ}$の面積の和は$[$17$]$である.
(3)$\mathrm{BP}=x (0<x \leqq 1)$とおくと$S=[$18$]x^2-[$19$]x+[$20$]$であり,$\displaystyle S=\frac{7}{4}$となるのは$\displaystyle x=\frac{[$21$] \pm \sqrt{[$22$]}}{[$23$]}$のときである.また$\displaystyle x=\frac{[$24$]}{[$25$]}$のとき$S$は最小となり,その値は$\displaystyle \frac{[$26$]}{[$27$]}$である.
広島経済大学 私立 広島経済大学 2015年 第1問
次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)$18(2n-4) \leqq 48n-400$を満たす最小の自然数$n$は$n=[$1$]$である.
(2)$\sqrt{10}$の整数部分を$a$,小数部分を$b$とする.このとき,


$a=[$2$]$,$b=\sqrt{[$3$]}-[$4$]$であり

$\displaystyle \frac{a}{b}=[$5$] \sqrt{[$6$]}+[$7$]$である.


(3)次の式を計算せよ.
\[ \frac{\sqrt{5}+\sqrt{3}}{\sqrt{15}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{15}+\sqrt{3}}=\frac{\sqrt{[$8$]}+[$9$] \sqrt{[$10$]}}{[$11$]} \]
(4)$720$の正の約数の個数は$[$12$]$個である.
広島経済大学 私立 広島経済大学 2015年 第5問
次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)$n$を自然数とする.$\sqrt{504n}$は$n=[$39$]$のとき最小の自然数$[$40$]$になる.
(2)和が$80$,最大公約数が$16$である$2$つの自然数の差は$[$41$]$または$[$42$]$である.但し$[$41$]<[$42$]$とする.
(3)$9$で割ると$2$余り$8$で割ると$3$余る自然数$n$のうち,$10 \leqq n \leqq 100$を満たす$n$は$[$43$]$と$[$44$]$である.但し$[$43$]<[$44$]$とする.
(4)$112,\ 211,\ 409$のいずれを割っても余りが$13$となる自然数のうち,最大の自然数は$[$45$]$であり,最小の自然数は$[$46$]$である.
天使大学 私立 天使大学 2015年 第1問
次の問いに答えなさい.

(1)方程式$27x^3-54x^2-12x+24=0$を解きなさい.
\[ x=\frac{\mkakko{$\mathrm{a}$}}{\mkakko{$\mathrm{b}$}},\ \frac{\mkakko{$\mathrm{c}$}}{\mkakko{$\mathrm{d}$}},\ \mkakko{$\mathrm{e}$} \qquad \text{ただし} \mkakko{$\mathrm{a}$} \text{と} \mkakko{$\mathrm{b}$} \text{と} \mkakko{$\mathrm{d}$} \text{は正の数である.}\]
(2)$x,\ y,\ z$が$\displaystyle x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$をみたすとき,$(x+y)(y+z)(z+x)$の値を求めなさい.
\[ (x+y)(y+z)(z+x)=\mkakko{$\mathrm{f}$} \]
(3)関数$f(x)=|x+1|+|x-1|+|x-2|$の最小値$m$と,最小値をとるときの$x$の値を求めなさい.
\[ x=\mkakko{$\mathrm{g}$} \text{のとき} m=\mkakko{$\mathrm{h}$} \text{である.} \]
(4)$a$を正の定数とする.関数$y=x^2+ax-a^2-3a+1$の$-2a \leqq x \leqq 2a$での最大値$M$を最小にする定数$a$の値と$M$の最小値$m$の値を求めなさい.
\[ a=\frac{\mkakko{$\mathrm{i}$}}{\mkakko{$\mathrm{j}$} \mkakko{$\mathrm{k}$}} \text{のとき,} m=\frac{\mkakko{$\mathrm{l}$} \mkakko{$\mathrm{m}$}}{\mkakko{$\mathrm{n}$} \mkakko{$\mathrm{o}$}} \text{である.} \]
ただし$\mkakko{$\mathrm{j}$}$と$\mkakko{$\mathrm{n}$}$は正の数である.
大阪工業大学 私立 大阪工業大学 2015年 第4問
関数$f(x)=2 \sqrt{1-x^2}$に対し,曲線$y=f(x)$上の点$\mathrm{P}(a,\ 2 \sqrt{1-a^2})$における接線を$\ell$とする.$\ell$と$x$軸,$y$軸との交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とし,線分$\mathrm{QR}$の長さを$d$とするとき,次の問いに答えよ.ただし,$0<a<1$とする.

(1)$f(x)$を微分せよ.
(2)直線$\ell$の方程式を求めよ.
(3)$d^2$を$a$を用いて表せ.
(4)$d$の値が最小となるような$a$の値と,そのときの$d$の値を求めよ.
近畿大学 私立 近畿大学 2015年 第3問
座標平面において,中心が原点$\mathrm{O}$で点$\mathrm{P}(1,\ 0)$を通る円$C_1$と,中心が点$\mathrm{Q}(s,\ t)$で点$\mathrm{P}$を通る円$C_2$がある.ただし$t>0$とする.$C_1$と$C_2$の$\mathrm{P}$ではない交点を$\mathrm{R}$とし,$C_1$の境界を含む内部と$C_2$の境界を含む内部の共通部分を$D$とする.

(1)直線$\mathrm{PR}$の方程式は$s(x-[ア])+ty=0$である.$s=0$のとき,点$\mathrm{R}$は$t$の値によらず同じ位置にあって,その座標は$([イ][ウ],\ [エ])$である.

(2)$s=\sqrt{3} \, t$のとき,点$\mathrm{R}$は$s$と$t$の値によらず同じ位置にあって,その座標は$\displaystyle \left( \frac{[オ]}{[カ]},\ \frac{\sqrt{[キ]}}{[ク]} \right)$である.四角形$\mathrm{OPQR}$は円に内接するとする.このとき,点$\mathrm{Q}$の座標は$\displaystyle \left( [ケ],\ \frac{\sqrt{[コ]}}{[サ]} \right)$である.また,領域$D$の面積は$\displaystyle \frac{[シ]}{[ス][セ]} \pi-\frac{\sqrt{[ソ]}}{[タ]}$である.

(3)点$\mathrm{Q}$は$s+t=2$を満たしながら動くとする.線分$\mathrm{QR}$の長さが最小となるような点$\mathrm{R}$の座標は$\displaystyle \left( \frac{[チ]}{[ツ]},\ \frac{[テ]}{[ト]} \right)$であり,このときの領域$D$の面積は$\displaystyle \frac{\pi}{4}-\frac{\alpha}{[ナ]}-\frac{[ニ]}{[ヌ]}$となる.ただし,$\displaystyle \sin \alpha=\frac{4}{5} \left( 0<\alpha<\frac{\pi}{2} \right)$である.
東京薬科大学 私立 東京薬科大学 2015年 第2問
次の問に答えよ.ただし,$*$については$+,\ -$の$1$つが入る.

(1)座標平面上に$(0,\ 0)$,$(1,\ 0)$,$(1,\ 1)$,$(0,\ 1)$を頂点とする正方形$\mathrm{A}$と,その内部を通過する放物線$C_1:y=x^2$,$C_2:y=x^2+a$,$C_3:y=bx^2$がある.

(i) $C_1$上の点$(x,\ y)$と頂点$(0,\ 1)$との距離が最小になるのは$\displaystyle x=\frac{\sqrt{[ス]}}{[セ]}$のときであり,その最小値は$\displaystyle \frac{\sqrt{[ソ]}}{[タ]}$である.
(ii) $C_2$が$\mathrm{A}$の面積を$2$等分するとき,$\displaystyle a=1-\left( \displaystyle\frac{[チ]}{[ツ]} \right)^{\frac{2}{3}}$である.

(iii) $C_3$が$\mathrm{A}$の面積を$2$等分するとき,$\displaystyle b=\frac{[テト]}{[ナ]}$である.

(2)$p$を負でない実数とする.$2$次方程式
\[ x^2-(p^2+3)x+1+2p=0 \]
の異なる$2$つの解を$\displaystyle \tan \alpha,\ \tan \beta \left( 0<\alpha<\frac{\pi}{2},\ 0<\beta<\frac{\pi}{2} \right)$とする.$p=0$のとき,$\displaystyle \alpha+\beta=\frac{[ニ]}{[ヌ]} \pi$であり,

$p>0$のとき,$\tan (\alpha+\beta)$のとり得る値の最大値は$[$*$ネ] \sqrt{[ノ]}$であるから,$\alpha+\beta$の最大値は$\displaystyle \frac{[ハ]}{[ヒ]} \pi$である.
東京薬科大学 私立 東京薬科大学 2015年 第4問
次の問に答えよ.ただし,$*$については$+,\ -$の$1$つが入る.

$y=x^3-2x$の表す曲線$C$がある.

(1)$\alpha \neq 0$のとき,$C$上の点$\mathrm{P}(\alpha,\ \alpha^3-2 \alpha)$における接線$\ell$の方程式は
\[ y=([$*$あ] \alpha^2+[$*$い])x+[$*$う] \alpha^3 \]
である.
(2)$\ell$が再び$C$と交わる点を$\mathrm{Q}$とすると,$\mathrm{Q}$の$x$座標は$[$*$え] \alpha$であり,線分$\mathrm{PQ}$と$C$とで囲まれる図形の面積は$\displaystyle \frac{[おか]}{[き]} \alpha^4$である.
(3)$\alpha>0$,線分$\mathrm{PQ}$の長さを$L$とするとき,$\displaystyle \frac{L^2}{\alpha^2}$が最小になるのは$\displaystyle \alpha=\frac{\sqrt{[く]}}{[け]}$のときである.
(4)原点を除く直線$y=[$*$こ]x$上の点からは,$C$への接線がちょうど$2$本引ける.
スポンサーリンク

「最小」とは・・・

 まだこのタグの説明は執筆されていません。