タグ「最小値」の検索結果

8ページ目:全1222問中71問~80問を表示)
岩手大学 国立 岩手大学 2016年 第5問
関数$F(x)$と連続関数$f(t)$の関係が
\[ F(x)=\int_{-x}^x f(t) \, dt \]
で与えられるとき,次の問いに答えよ.

(1)$f(t)=e^t-e^{-t}$のとき,$F(x)$を求めよ.
(2)$2$つの連続関数$g(t)$,$h(t)$において,$g(-t)=g(t)$,$h(-t)=-h(t)$が常に成り立つとする.$f(t)=g(t)+h(t)$とするとき,$F^{\prime}(x)$を求めよ.
(3)$f(t)=t^2-1+(e^t-e^{-t}) \cos t$のとき,$x>0$における$F(x)$の最小値を求めよ.
山形大学 国立 山形大学 2016年 第1問
次の問いに答えよ.

(1)関数$f(x)=x^3-2kx^2+(k+3)x+5$が極値をもたないように,定数$k$の値の範囲を定めよ.
(2)定積分$\displaystyle \int_0^{\frac{\pi}{2}} |\cos 3x \cos x| \, dx$を求めよ.
(3)複素数$z$が$|z-2i|=2$を満たすとき,$|z-2 \sqrt{3|}$の最大値と最小値を求めよ.また,そのときの$z$の値を求めよ.ただし,$i$は虚数単位である.
岩手大学 国立 岩手大学 2016年 第1問
次の問いに答えよ.

(1)$2$次関数$y=x^2-2ax+a+2$の最小値が負であるような定数$a$の範囲を求めよ.
(2)$\mathrm{A}$チームと$\mathrm{B}$チームがサッカーの試合を$7$回行う.どの試合でも,$\mathrm{A}$チームが勝つ確率は$\displaystyle \frac{1}{2}$,$\mathrm{B}$チームが勝つ確率は$\displaystyle \frac{1}{6}$,引き分けとなる確率は$\displaystyle \frac{1}{3}$であるとして,$\mathrm{A}$チームの試合結果が$3$勝$2$敗$2$引き分けとなる確率を求めよ.
(3)四面体$\mathrm{OABC}$において,

$\mathrm{BC}=30$,$\mathrm{CA}=26$,$\displaystyle \cos \angle \mathrm{BAC}=\frac{5}{13}$,
$\mathrm{OA}=18$,$\angle \mathrm{OAB}=\angle \mathrm{OAC}={90}^\circ$

であるとき,辺$\mathrm{AB}$の長さおよび四面体$\mathrm{OABC}$の体積を求めよ.
岩手大学 国立 岩手大学 2016年 第1問
次の問いに答えよ.

(1)$2$次関数$y=x^2-2ax+a+2$の最小値が負であるような定数$a$の範囲を求めよ.
(2)$\mathrm{A}$チームと$\mathrm{B}$チームがサッカーの試合を$7$回行う.どの試合でも,$\mathrm{A}$チームが勝つ確率は$\displaystyle \frac{1}{2}$,$\mathrm{B}$チームが勝つ確率は$\displaystyle \frac{1}{6}$,引き分けとなる確率は$\displaystyle \frac{1}{3}$であるとして,$\mathrm{A}$チームの試合結果が$3$勝$2$敗$2$引き分けとなる確率を求めよ.
(3)四面体$\mathrm{OABC}$において,

$\mathrm{BC}=30$,$\mathrm{CA}=26$,$\displaystyle \cos \angle \mathrm{BAC}=\frac{5}{13}$,
$\mathrm{OA}=18$,$\angle \mathrm{OAB}=\angle \mathrm{OAC}={90}^\circ$

であるとき,辺$\mathrm{AB}$の長さおよび四面体$\mathrm{OABC}$の体積を求めよ.
東京学芸大学 国立 東京学芸大学 2016年 第2問
空間において,同一平面上にない$4$点を$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とする.線分$\mathrm{OA}$,$\mathrm{OB}$を$2$辺とする平行四辺形を$\mathrm{OADB}$,線分$\mathrm{OA}$,$\mathrm{OC}$を$2$辺とする平行四辺形を$\mathrm{OAEC}$,線分$\mathrm{OB}$,$\mathrm{OC}$を$2$辺とする平行四辺形を$\mathrm{OBFC}$とする.下の問いに答えよ.

(1)$\triangle \mathrm{ODE}$を含む平面と直線$\mathrm{AF}$の交点を$\mathrm{G}$とするとき,ベクトル$\overrightarrow{\mathrm{OG}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$を用いて表せ.
(2)$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=1$,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}=x$とする.点$\mathrm{O}$を中心とし,点$\mathrm{G}$を含む球面と$\triangle \mathrm{ABE}$を含む平面の交わりで得られる円の半径の最小値とそのときの$x$の値を求めよ.
山口大学 国立 山口大学 2016年 第2問
$1$から$6$までの目が同じ割合で出る$4$個のさいころを同時に投げるとき,次の確率を求めなさい.

(1)出る目がすべて異なる確率
(2)出る目の最小値が$2$,かつ最大値が$3$である確率
(3)出る目の最大値と最小値の積が$20$以上である確率
福井大学 国立 福井大学 2016年 第2問
四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{OC}$のどの$2$辺も互いに直交し,長さがすべて$1$である.$3$点$\mathrm{O}$,$\mathrm{B}$,$\mathrm{C}$を通る平面上に点$\mathrm{D}$を
\[ \mathrm{OD}=1,\quad 0^\circ<\angle \mathrm{BOD}<{90}^\circ,\quad 0^\circ<\angle \mathrm{COD}<{90}^\circ \]
となるようにとり,$\angle \mathrm{BOD}=\theta$,$\cos \theta=x$とおく.線分$\mathrm{AB}$を$(x+2):x$に外分する点を$\mathrm{E}$,線分$\mathrm{AC}$を$x:(1-x)$に内分する点を$\mathrm{F}$,三角形$\mathrm{DEF}$の重心を$\mathrm{G}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OD}}$を,$x,\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.また,$\overrightarrow{\mathrm{OG}}$を,$x,\ \overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)点$\mathrm{G}$が$3$点$\mathrm{O}$,$\mathrm{B}$,$\mathrm{C}$を通る平面上にあるような$x$の値を求めよ.
(3)$\overrightarrow{\mathrm{OG}}$と$\overrightarrow{\mathrm{DF}}$の内積の最小値と,そのときの$x$の値を求めよ.
東京海洋大学 国立 東京海洋大学 2016年 第2問
連立不等式
\[ y \geqq 0,\quad x^2+y^2 \leqq 1,\quad y \geqq 6x^2-4 \]
の表す$xy$平面上の領域を$D$とするとき,次の問に答えよ.

(1)領域$D$を図示せよ.
(2)点$(x,\ y)$が領域$D$を動くとき$y-x$の最大値と最小値を求めよ.
(3)$D$の面積を求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
中心の座標が$(1,\ 1)$,半径が$2 \sqrt{2}$である座標平面上の円を$C$とする.$C$上の点$\mathrm{P}(x,\ y)$に対して$t=x+y$とおく.

(1)$\mathrm{P}(x,\ y)$が$C$上を動くとき$t$が取り得る値の範囲は$[$1$][$2$] \leqq t \leqq [$3$][$4$]$である.特に$t=0$のとき,$x^2+y^2=[$5$]$が成り立つ.
(2)$\mathrm{P}(x,\ y)$が$C$上を動くとき,$xy$の値は$t=[$6$]$のとき最小値$\displaystyle \frac{[$7$][$8$]}{[$9$]}$をとる.
(3)$\mathrm{P}(x,\ y)$が$C$上を動くとき,$x^3+y^3$の値は$t=[$10$]+\sqrt{[$11$][$12$]}$のとき最大になる.
慶應義塾大学 私立 慶應義塾大学 2016年 第4問
$t$を正の実数とし,$x$の$2$次方程式
\[ x^2-2 \{(\log_2 t)^2+1\}x+6(\log_2 t)^2+1=0 \]
を考える.

(1)上の$2$次方程式の実数解が存在しない$t$の範囲を求めよ.

上の方程式が実数解を持つ$t$に対して,実数解がただ$1$つのときはその値を$f(t)$と定め,実数解が$2$つあるときは小さいほうの値を$f(t)$と定める.

(2)上の$2$次方程式の実数解がただ$1$つ存在する$t$の集合を$A$とする.$t \in A$のとき$f(t)$の最小値と最大値を求めよ.
(3)$t$が$\displaystyle 1 \leqq \log_4 t \leqq \frac{3}{2}$を満たす範囲を動くとき,$f(t)$の最小値を求めよ.
スポンサーリンク

「最小値」とは・・・

 まだこのタグの説明は執筆されていません。