タグ「最小値」の検索結果

19ページ目:全1222問中181問~190問を表示)
静岡大学 国立 静岡大学 2015年 第3問
$e$を自然対数の底とし,$0 \leqq x \leqq e$とする.関数$\displaystyle f(x)=\int_0^2 |e^t-x^2| \, dt$について,次の問いに答えよ.

(1)定積分を計算し,$f(x)$を$x$を用いて表せ.
(2)$f(x)$の最大値と最小値を求めよ.また,それらの値をとるときの$x$の値もそれぞれ求めよ.
静岡大学 国立 静岡大学 2015年 第3問
$e$を自然対数の底とし,$0 \leqq x \leqq e$とする.関数$\displaystyle f(x)=\int_0^2 |e^t-x^2| \, dt$について,次の問いに答えよ.

(1)定積分を計算し,$f(x)$を$x$を用いて表せ.
(2)$f(x)$の最大値と最小値を求めよ.また,それらの値をとるときの$x$の値もそれぞれ求めよ.
琉球大学 国立 琉球大学 2015年 第2問
関数$f(x)=|x| \sqrt{1-x^2} (-1 \leqq x \leqq 1)$について,次の問いに答えよ.

(1)$f(x)$の増減を調べ,最大値,最小値を求めよ.
(2)定積分$\displaystyle \int_{-1}^1 f(x) \, dx$を求めよ.
鳥取大学 国立 鳥取大学 2015年 第3問
$xy$平面上の第$1$象限内の$2$つの曲線$C_1:y=\sqrt{x} (x>0)$と$\displaystyle C_2:y=\frac{1}{x} (x>0)$を考える.次の問いに答えよ.ただし,$a$は正の実数とする.

(1)$x=a$における$C_1$の接線$L_1$の方程式を求めよ.
(2)$C_2$の接線$L_2$が$(1)$で求めた$L_1$と直交するとき,接線$L_2$の方程式を求めよ.
(3)$(2)$で求めた$L_2$が$x$軸,$y$軸と交わる点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とする.折れ線$\mathrm{AOB}$の長さ$l$を$a$の関数として求め,$l$の最小値を求めよ.ここで,$\mathrm{O}$は原点である.
鳥取大学 国立 鳥取大学 2015年 第3問
$xy$平面上の第$1$象限内の$2$つの曲線$C_1:y=\sqrt{x} (x>0)$と$\displaystyle C_2:y=\frac{1}{x} (x>0)$を考える.次の問いに答えよ.ただし,$a$は正の実数とする.

(1)$x=a$における$C_1$の接線$L_1$の方程式を求めよ.
(2)$C_2$の接線$L_2$が$(1)$で求めた$L_1$と直交するとき,接線$L_2$の方程式を求めよ.
(3)$(2)$で求めた$L_2$が$x$軸,$y$軸と交わる点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とする.折れ線$\mathrm{AOB}$の長さ$l$を$a$の関数として求め,$l$の最小値を求めよ.ここで,$\mathrm{O}$は原点である.
大分大学 国立 大分大学 2015年 第3問
正の実数$p_i,\ q_i (i=1,\ 2,\ \cdots,\ n)$が$\displaystyle \sum_{i=1}^n p_i=\sum_{i=1}^n q_i=1$を満たすとき,次の問いに答えなさい.

(1)不等式$\log x \leqq x-1$が成り立つことを証明しなさい.
(2)不等式$\displaystyle \sum_{i=1}^n p_i \log p_i \geqq \sum_{i=1}^n p_i \log q_i$が成り立つことを証明しなさい.
(3)$\displaystyle F=\sum_{i=1}^n p_i \log p_i$の最小値を求めなさい.
(4)正の実数$a_i (i=1,\ 2,\ \cdots,\ n)$に対して,$\displaystyle G=\sum_{i=1}^n a_i \log a_i$の最小値を求めなさい.
佐賀大学 国立 佐賀大学 2015年 第1問
$\phantom{A}$
\[ f(x)=\left\{ \begin{array}{ll}
x(5-x) & (x \geqq 0) \\
x(x^2-1) & (x<0)
\end{array} \right. \]
とおき,関数$y=f(x)$のグラフを$C$とおく.直線$y=ax$と$C$は,原点$\mathrm{O}$およびそれ以外の$2$点$\mathrm{P}$,$\mathrm{Q}$で交わっているものとする.ただし,点$\mathrm{P}$の$x$座標は正,点$\mathrm{Q}$の$x$座標は負であるとする.線分$\mathrm{OP}$と$C$によって囲まれる図形の面積を$S_1(a)$,線分$\mathrm{OQ}$と$C$によって囲まれる図形の面積を$S_2(a)$とし,$S(a)=S_1(a)+S_2(a)$とおく.このとき,次の問に答えよ.

(1)$a$の値の範囲を求めよ.
(2)$S_1(a)$を$a$を用いて表せ.
(3)$S_2(a)$を$a$を用いて表せ.
(4)$(1)$で求めた範囲を$a$が変化するとき,$S(a)$の最小値を求めよ.
九州工業大学 国立 九州工業大学 2015年 第3問
$n$を$2$以上の自然数とし,関数$f(x)$を$f(x)=x^n \log x (x>0)$とする.ただし,対数は自然対数とする.次に答えよ.

(1)$x>0$のとき,不等式$\displaystyle \log x+\frac{1}{x}>0$を証明せよ.
(2)$\displaystyle \lim_{x \to +0}x^n \log x=0$を示せ.
(3)関数$f(x)$の増減を調べ,その最小値を求めよ.また,曲線$y=f(x)$の概形をかけ.ただし,曲線の凹凸は調べなくてよい.
(4)$f(x)$が最小値をとるときの$x$の値を$c_n$とし
\[ I_n=\int_{c_n}^1 f(x) \, dx \]
とする.$\displaystyle \lim_{n \to \infty} n^2I_n$を求めよ.
徳島大学 国立 徳島大学 2015年 第4問
$a>0$とし,$\displaystyle I=\int_0^1 |a \sqrt{x|-x} \, dx$とする.

(1)$a \sqrt{x}-x=0$を満たす$x$を求めよ.
(2)$I$を$a$を用いて表せ.
(3)$a$が$a>0$の範囲を動くとき,$I$の最小値を求めよ.
徳島大学 国立 徳島大学 2015年 第3問
$a>0$とし,$\displaystyle I=\int_0^1 |a \sqrt{x|-x} \, dx$とする.

(1)$a \sqrt{x}-x=0$を満たす$x$を求めよ.
(2)$I$を$a$を用いて表せ.
(3)$a$が$a>0$の範囲を動くとき,$I$の最小値を求めよ.
スポンサーリンク

「最小値」とは・・・

 まだこのタグの説明は執筆されていません。