タグ「最小値」の検索結果

15ページ目:全1222問中141問~150問を表示)
福岡大学 私立 福岡大学 2016年 第5問
平均値と中央値は共に代表値であり,求め方は全く異なるが比較的近い値であることが多い.いま,偶数個の身長のデータがあり,その最小値は$m=140 \, \mathrm{cm}$,最大値は$M=180 \, \mathrm{cm}$である.このデータの中央値が$A=150 \, \mathrm{cm}$のとき,半数のデータは$m$以上$A$以下の値であり,残る半数のデータは$A$以上$M$以下である.このことから平均値$\overline{x}$のとる値の範囲は$[ ]$である.また,平均値と中央値の関係を用いると,最小値が$m=140 \, \mathrm{cm}$,最大値が$M=180 \, \mathrm{cm}$である偶数個のデータの平均値が$\overline{x}=170 \, \mathrm{cm}$であるとき,中央値$A$の取る値の範囲は$[ ]$である.
広島経済大学 私立 広島経済大学 2016年 第3問
$a$を定数として,$2$次関数$y=x^2+3ax+6-2a$とそのグラフを考える.このとき,次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)$a=1$のとき,この関数のグラフの頂点の座標は$\displaystyle \left( -\displaystyle\frac{[$16$]}{[$17$]},\ \displaystyle\frac{[$18$]}{[$19$]} \right)$である.
(2)この関数のグラフが$x$軸と接するとき,$\displaystyle a=\frac{-[$20$] \pm [$21$] \sqrt{[$22$]}}{[$23$]}$である.
(3)$x=-2$のとき,この関数は最小値をとる.このとき,$\displaystyle a=\frac{[$24$]}{[$25$]}$,最小値は$\displaystyle -\frac{[$26$]}{[$27$]}$である.
(4)この関数の最小値が$-7$であるとき,$a=[$28$]$または$\displaystyle a=-\frac{[$29$]}{[$30$]}$である.
広島経済大学 私立 広島経済大学 2016年 第3問
$2$次関数$y=ax^2-2ax+b-2$のグラフを$C$とする.ただし,$a,\ b$は定数とする.このとき,次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)$C$が$2$点$(-2,\ 1)$,$(1,\ 4)$を通るとき,
\[ a=-\frac{[$22$]}{[$23$]},\quad b=\frac{[$24$]}{[$25$]} \]
である.
(2)この関数の最大値が$3$であり,$C$が点$(-1,\ 1)$を通るとき,
\[ a=-\frac{[$26$]}{[$27$]},\quad b=\frac{[$28$]}{[$29$]} \]
である.
(3)$C$が$x$軸と接し,点$(3,\ 2)$を通るとき,
\[ a=\frac{[$30$]}{[$31$]},\quad b=\frac{[$32$]}{[$33$]} \]
である.
(4)区間$0 \leqq x \leqq 4$において,この関数の最大値が$5$,最小値が$-2$であるとき,
\[ a=\frac{[$34$]}{[$35$]},\quad b=\frac{[$36$]}{[$37$]},\quad \text{または} \quad a=-\frac{[$38$]}{[$39$]},\quad b=\frac{[$40$]}{[$41$]} \]
である.
沖縄国際大学 私立 沖縄国際大学 2016年 第1問
$a$を定数とし,$2$次関数$y=ax^2-4ax+a+5$のグラフを$C$とする.以下の各問いに答えなさい.

(1)グラフ$C$が点$(3,\ 1)$を通るとき,$a$の値を求めなさい.
(2)$(1)$で求めた関数の頂点の座標を求めなさい.
(3)$(1)$で求めた関数について,$-1 \leqq x \leqq 3$の時,$y$の最大値と最小値をそれぞれ求めなさい.
金沢工業大学 私立 金沢工業大学 2016年 第1問
次の問いに答えよ.

(1)$\displaystyle x=\frac{\sqrt{5}}{\sqrt{3}+\sqrt{2}}$,$\displaystyle y=\frac{\sqrt{5}}{\sqrt{3}-\sqrt{2}}$のとき,$x^2+y^2-xy=[アイ]$である.

(2)$\displaystyle 1+\frac{1}{2+\displaystyle\frac{1}{2+\displaystyle\frac{1}{x}}}=\frac{[ウ]x+[エ]}{[オ]x+[カ]}$である.
(3)$k$を定数とする.$2$次方程式$x^2+(3k+1)x+2k^2+2k-1=0$の$2$つの解を$\alpha,\ \beta$とし,$\beta-\alpha=2$とする.このとき,$k=[キ]$であり,$\alpha=[クケ]$,$\beta=[コサ]$である.
(4)不等式$|2x^2+x-2|>1$の解は$\displaystyle x<\frac{[シス]}{[セ]}$,$\displaystyle [ソタ]<x<\frac{[チ]}{[ツ]}$,$[テ]<x$である.
(5)等式$720x=y^3$を満たす正の整数$x,\ y$の組のうち,$x$が最小であるものは$x=[アイウ]$,$y=[エオ]$である.
(6)点$(1,\ 2)$に関して点$(2,\ -1)$と対称な点の座標は$([カ],\ [キ])$である.また,直線$2x-y-1=0$に関して,点$(2,\ -1)$と対称な点の座標は$\displaystyle \left( \frac{[クケ]}{[コ]},\ \frac{[サ]}{[シ]} \right)$である.
(7)$a,\ b$を定数とし,$a>0$とする.関数$y=ax^2-6ax+b (1 \leqq x \leqq 4)$の最大値が$5$,最小値が$-2$であるとき,$\displaystyle a=\frac{[ス]}{[セ]}$,$\displaystyle b=\frac{[ソタ]}{[チ]}$である.
(8)$2$個のさいころを同時に投げるとき,出る目の差の絶対値が$2$である確率は$\displaystyle \frac{[ツ]}{[テ]}$である.
藤田保健衛生大学 私立 藤田保健衛生大学 2016年 第1問
次の問いに答えよ.

(1)全体集合$U$の要素の個数が$50$,$U$の部分集合$A,\ B,\ C$の要素の個数がそれぞれ$33$,$36$,$37$である.$A \cap B \cap C$の要素の個数の最小値を求めよ.
(2)$70$より大きい$2$桁の素数の値すべてからなる$1$組のデータがある.ただし,同じ値は重複していない.このデータの標準偏差を求めよ.
(3)$(0.9)^n<0.01$を満たす最小の整数$n$を求めよ.ただし小数第$5$位を四捨五入したとき$\log_{10}3=0.4771$である.
(4)極方程式$r=2(\cos \theta+\sin \theta)$の表す曲線を直交座標$(x,\ y)$に関する方程式で表す.$x=1$に対する$y$をすべて求めよ.
(5)複素数平面上に点$\mathrm{A}$を直角の頂点とする直角二等辺三角形$\mathrm{ABC}$がある.$\mathrm{A}(2+i)$,$\mathrm{B}(4+4i)$のとき点$\mathrm{C}$を表す複素数を求めよ.
(6)$\displaystyle \lim_{x \to \infty} (\sqrt{3x^2+2x+1}+ax+b)=0$が成り立つように定数$a,\ b$の値を定めよ.
(7)$x>0$で定義される関数$\displaystyle f(x)=\frac{\log 2x}{x^2}$の最大値を求めよ.
(8)曲線$x=3(t-\sin t)$,$y=3(1-\cos t)$の$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$の部分の長さを求めよ.
近畿大学 私立 近畿大学 2016年 第2問
等式
\[ f^\prime(x)=x^2+2 \left( \int_0^1 f(t) \, dt \right) x \]
を満たす関数$y=f(x)$を考える.$\displaystyle c=\int_0^1 f(t) \, dt$とおく.

(1)$\displaystyle f(x)=\frac{1}{3}x^3+cx^2+\left( \frac{[ア]}{[イ]}c-\frac{[ウ]}{[エオ]} \right)$であり,

$f(0)=1$のとき,$\displaystyle c=\frac{[カキ]}{[ク]}$である.

(2)$c<0$とし,$f(x)$は$0 \leqq x \leqq 1$において$x=1$で最大値をとるものとする.このとき,$c$のとりうる最小の値は
\[ \frac{[ケコ]}{[サ]} \]
であり,$f(x)$の$0 \leqq x \leqq 1$における最小値は$c$を用いて
\[ \frac{[シ]}{[ス]} c^{\mkakko{セ}}+\frac{[ソ]}{[タ]}c-\frac{[チ]}{[ツテ]} \]
と表すことができる.
(3)座標平面において,関数$y=f(x)$のグラフと直線
\[ y=-\frac{3}{4}c^2x-\frac{1}{12} \]
が点$(-1,\ f(-1))$で接するとき,$c=[ト]$である.このとき,$2$つのグラフのもう$1$つの共有点の$x$座標は$[ナニ]$である.
近畿大学 私立 近畿大学 2016年 第2問
等式
\[ f^\prime(x)=x^2+2 \left( \int_0^1 f(t) \, dt \right) x \]
を満たす関数$y=f(x)$を考える.$\displaystyle c=\int_0^1 f(t) \, dt$とおく.

(1)$\displaystyle f(x)=\frac{1}{3}x^3+cx^2+\left( \frac{[ア]}{[イ]}c-\frac{[ウ]}{[エオ]} \right)$であり,

$f(0)=1$のとき,$\displaystyle c=\frac{[カキ]}{[ク]}$である.

(2)$c<0$とし,$f(x)$は$0 \leqq x \leqq 1$において$x=1$で最大値をとるものとする.このとき,$c$のとりうる最小の値は
\[ \frac{[ケコ]}{[サ]} \]
であり,$f(x)$の$0 \leqq x \leqq 1$における最小値は$c$を用いて
\[ \frac{[シ]}{[ス]} c^{\mkakko{セ}}+\frac{[ソ]}{[タ]}c-\frac{[チ]}{[ツテ]} \]
と表すことができる.
(3)座標平面において,関数$y=f(x)$のグラフと直線
\[ y=-\frac{3}{4}c^2x-\frac{1}{12} \]
が点$(-1,\ f(-1))$で接するとき,$c=[ト]$である.このとき,$2$つのグラフのもう$1$つの共有点の$x$座標は$[ナニ]$である.
名城大学 私立 名城大学 2016年 第1問
次の$[ ]$にあてはまる答えを記入せよ.

(1)$100$未満の自然数で,$3$または$4$または$5$で割り切れる数は$[ア]$個,$3$または$4$で割り切れ$5$では割り切れない数は$[イ]$個である.
(2)\begin{mawarikomi}{45mm}{
(図は省略)
}
右図において,点$\mathrm{I}$を$\triangle \mathrm{ABC}$の内心,点$\mathrm{D}$を直線$\mathrm{AI}$と辺$\mathrm{BC}$の交点とし,$\mathrm{AB}=3$,$\mathrm{BC}=4$,$\mathrm{CA}=6$とする.このとき,$\mathrm{BD}=[ウ]$であり,$\displaystyle \frac{\mathrm{AI}}{\mathrm{ID}}=[エ]$である.
\end{mawarikomi}

(3)整数$a$を$3$進数${122}_{(3)}$で割ったときの商と余りは,それぞれ${212}_{(3)}$と${102}_{(3)}$である.このとき,$a$を$3$進法で表すと${[オ]}_{(3)}$であり,$a$と$5$進数${410}_{(5)}$の和を$5$進法で表すと${[カ]}_{(5)}$である.
(4)不等式$2 |x-a|<x+1$について考える.$a=5$のとき,この不等式を満たす整数$x$は$[キ]$個である.また,この不等式を満たす整数$x$が$5$個あるとき,整数$a$の値は$[ク]$である.
(5)$\displaystyle -\frac{\pi}{4} \leqq \theta \leqq \frac{\pi}{4}$で$\displaystyle \sin \theta+\cos \theta=\frac{1}{2}$のとき,$\sin 2\theta=[ケ]$,$\cos 2\theta=[コ]$である.
(6)$a,\ b$は自然数で,$a^5 b^2$が$20$桁の数であり,かつ,$\displaystyle \frac{a^5}{b^2}$の整数部分が$10$桁であるとする.このとき,$a,\ b$の桁数をそれぞれ$m,\ n$とすると,$m=[サ]$,$n=[シ]$である.
(7)円$x^2+y^2-2(x+y)+1=0$と直線$y+2x=k$が共有点をもつとき,$k$の最大値は$[ス]$である.また,この円と直線$y=ax-3a$が共有点をもつとき,$a$の最小値は$[セ]$である.
大阪市立大学 公立 大阪市立大学 2016年 第3問
$a,\ b$は実数で,$b>0$とする.放物線$y=x^2$と直線$y=ax+b$の$2$つの交点を$\mathrm{P}$,$\mathrm{Q}$とおく.次の問いに答えよ.

(1)線分$\mathrm{PQ}$の長さを,$a$と$b$を用いて表せ.
(2)直線$y=ax+b$が点$\displaystyle \left( 1,\ \frac{5}{4} \right)$を通るときの,線分$\mathrm{PQ}$の長さの最小値を求めよ.
スポンサーリンク

「最小値」とは・・・

 まだこのタグの説明は執筆されていません。