タグ「最大」の検索結果

19ページ目:全460問中181問~190問を表示)
信州大学 国立 信州大学 2014年 第2問
次の各問いに答えよ.

(1)$3$つのベクトル$\overrightarrow{a}=(2,\ 1,\ 1)$,$\overrightarrow{b}=(2,\ s,\ t)$,$\overrightarrow{c}=(p,\ q,\ 2)$が次の条件をみたすような,$s,\ t,\ p,\ q$の値を求めよ.

(i) $|\overrightarrow{a}|=|\overrightarrow{b}|$
(ii) $\overrightarrow{a}$と$\overrightarrow{b}$のなす角は$60^\circ$
(iii) $\overrightarrow{c}$は$\overrightarrow{a}$と$\overrightarrow{b}$の両方に直交する.

(2)$n$を$0$以上の整数とする.$n+1$個の自然数$2^0,\ 2^1,\ \cdots,\ 2^n$の中に,最上位の桁の数字が$1$であるものはいくつあるか.ただし,$x$を超えない最大の整数を表す記号$[x]$を用いて解答してよい.

注:例えば$2014$の最上位の桁の数字は$2$であり,$14225$の最上位の桁の数字は$1$である.
信州大学 国立 信州大学 2014年 第3問
次の各問いに答えよ.

(1)$3$つのベクトル$\overrightarrow{a}=(2,\ 1,\ 1)$,$\overrightarrow{b}=(2,\ s,\ t)$,$\overrightarrow{c}=(p,\ q,\ 2)$が次の条件をみたすような,$s,\ t,\ p,\ q$の値を求めよ.

(i) $|\overrightarrow{a}|=|\overrightarrow{b}|$
(ii) $\overrightarrow{a}$と$\overrightarrow{b}$のなす角は$60^\circ$
(iii) $\overrightarrow{c}$は$\overrightarrow{a}$と$\overrightarrow{b}$の両方に直交する.

(2)$n$を$0$以上の整数とする.$n+1$個の自然数$2^0,\ 2^1,\ \cdots,\ 2^n$の中に,最上位の桁の数字が$1$であるものはいくつあるか.ただし,$x$を超えない最大の整数を表す記号$[x]$を用いて解答してよい.

注:例えば$2014$の最上位の桁の数字は$2$であり,$14225$の最上位の桁の数字は$1$である.
福島大学 国立 福島大学 2014年 第5問
正の整数$n$を
\[ n=a_1+a_2+\cdots +a_k \]
のようにいくつかの正の整数の和として表す.このとき,正の整数の組$(a_1,\ a_2,\ \cdots,\ a_k)$を$n$の分割とよぶ.ここで,$k=1$の場合,すなわち$n=a_1$として$(a_1)$も$n$の分割とみなす.

いま,$n$の分割$(a_1,\ a_2,\ \cdots,\ a_k)$であって,積$a_1a_2 \cdots a_k$が最大となるものを$n$の最大分割と呼ぶことにし,その積の値を$P(n)$と書くことにする.

(1)$P(4)$を求めなさい.
(2)$n>1$とする.$n$の分割$(a_1,\ a_2,\ \cdots,\ a_k)$で$a_1=1$のものは最大分割でないことを示しなさい.
(3)最大分割に$2$が$3$回現れることはないことを示しなさい.
(4)最大分割に$5$以上の正の整数は現れないことを示しなさい.
(5)$P(20)$を求めなさい.
慶應義塾大学 私立 慶應義塾大学 2014年 第3問
下図のように,等しい辺の長さが$a$,その挟む角(頂角)が$2 \theta$である二等辺三角形を$4$つ使って四面体を作る.$x=\cos^2 \theta$とおけば,四面体の体積$V$は
\[ V=\frac{[$24$][$25$]}{[$26$][$27$]} (1-[$28$]x) \sqrt{[$29$]x-1} a^3 \]
となる.このように作られる四面体のなかで最大の四面体の体積は
\[ \frac{[$30$] \sqrt{[$31$]}}{[$32$][$33$]}a^3 \]
である.
(図は省略)
慶應義塾大学 私立 慶應義塾大学 2014年 第2問
$x$に関する$3$つの関数$f_1(x)=x(15-x)$,$\displaystyle f_2(x)=\frac{x(30-x)}{2}$,$f_3(x)=x(17-x)$が与えられている.

(1)$x_1+x_2=c$,$x_1 \geqq 0$,$x_2 \geqq 0$という条件の下で$f_1(x_1)+f_2(x_2)$を最大にする問題を考える.ただし,$c$は$20$以下の正数とする.最大値$V(c)$を与える$x_1,\ x_2$の値をそれぞれ$p,\ q$とすると,$\displaystyle q=\frac{[$10$][$11$]}{[$12$][$13$]}c$である.$V(c)=42$となる$c$の値は$[$14$][$15$]$である.
(2)$x_1+x_2+x_3=20$,$x_1 \geqq 0$,$x_2 \geqq 0$,$x_3 \geqq 0$という条件の下で
\[ f_1(x_1)+f_2(x_2)+f_3(x_3) \]
を最大にする問題を考える.最大値を与える$x_1,\ x_2,\ x_3$の値をそれぞれ$p,\ q,\ r$とすると
\[ q=\frac{[$16$][$17$]}{[$18$][$19$]},\quad r=\frac{[$20$][$21$]}{[$22$][$23$]} \]
である.
自治医科大学 私立 自治医科大学 2014年 第11問
円$x^2+y^2=2$と直線$y=2x+k$は相異なる$2$点$\mathrm{A}$,$\mathrm{B}$で交わる.$\triangle \mathrm{OAB}$の面積を$S$とする($\mathrm{O}$は原点).$S$が最大となるときの$k$の値を$M$としたとき,$M^2$の値を求めよ.
千葉工業大学 私立 千葉工業大学 2014年 第1問
次の各問に答えよ.

(1)$\displaystyle x<\frac{\sqrt{3}}{1-\sqrt{3}}$をみたす最大の整数$x$は$[アイ]$である.
(2)等式$\displaystyle \frac{x+5}{x^2+x-2}=\frac{a}{x-1}+\frac{b}{x+2}$が$x$についての恒等式であるとき,$a=[ウ]$,$b=[エオ]$である.
(3)点$(-4,\ a)$と直線$3x+4y-1=0$との距離が$1$であるとき,$a=[カ]$または$\displaystyle \frac{[キ]}{[ク]}$である.
(4)$\displaystyle \left( x-\frac{2}{3} \right)^9$の展開式において,$x^8$の係数は$[ケコ]$であり,$x^7$の係数は$[サシ]$である.
(5)$\overrightarrow{a}=(3,\ t+1,\ 1)$と$\displaystyle \overrightarrow{b}=\left( 2,\ -3,\ \frac{3}{2}t \right)$が垂直であるとき,$t=[ス]$である.
(6)$\displaystyle (5^{\frac{1}{3}}-5^{-\frac{1}{3}})(5^{\frac{2}{3}}+1+5^{-\frac{2}{3}})=\frac{[セソ]}{[タ]}$である.
(7)$\log_{10}2=p$とおくと,$\log_{10}5=[チ]-p$であり,$\displaystyle \log_4 500=\frac{[ツ]-p}{[テ]p}$である.
(8)$\displaystyle \int_{-1}^2 (-x^2+3 |x|) \, dx=\frac{[ト]}{[ナ]}$である.
福岡大学 私立 福岡大学 2014年 第4問
方程式$4^x-2^{-x}=5(2^x-1)$を満たす$x$のうち最大のものを$a$,最小のものを$b$とする.このとき$2^a$の値は$[ ]$で,$4^a+4^b$の値は$[ ]$である.
京都薬科大学 私立 京都薬科大学 2014年 第4問
実数$x$に対して,$x$を超えない最大整数を$[x]$で表すとする.例えば,$[2]=2$,$\displaystyle \left[ \frac{10}{3} \right]=3$である.次の$[ ]$のうち,$[オ]$と$[カ]$には式を,その他には整数を記入せよ.

(1)$[-5.2]=[ア]$となる.

(2)$\displaystyle \left[ \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}} \right]=[イ]$,$\displaystyle \left[ \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}} \right]=[ウ]$,

$\displaystyle \left[ \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}} \right]=[エ]$となる.

(3)不等式
\[ \frac{1}{\sqrt{k+1}+\sqrt{k}}<\frac{1}{2 \sqrt{k}}<\frac{1}{\sqrt{k}+\sqrt{k-1}} \]
の各辺を$k=2$から$k=n$まで,それぞれ加え合わせると,
\[ [オ]<\sum_{k=2}^n \frac{1}{\sqrt{k}}<[カ] \]
が得られる.ここで,$n$は$2$以上の整数とする.これにより,
\[ [キ] \times \sqrt{n}-[ク]-1<\sum_{k=1}^n \frac{1}{\sqrt{k}}<[キ] \times \sqrt{n}-[ク] \]
となる.よって,
\[ \left[ \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots +\frac{1}{\sqrt{9999}}+\frac{1}{\sqrt{10000}} \right]=[ケ] \]
である.
(4)同様にして,
\[ \left[ \frac{1}{\sqrt{100}}+\frac{1}{\sqrt{101}}+\frac{1}{\sqrt{102}}+\cdots +\frac{1}{\sqrt{9999}}+\frac{1}{\sqrt{10000}} \right]=[コ] \]
となる.
南山大学 私立 南山大学 2014年 第3問
曲線$y=e^{-x} \cos x$上の点$(a,\ e^{-a} \cos a)$における接線の方程式を$y=g(x)$とする.

(1)$g(x)$を求めよ.
(2)定積分$\displaystyle A=\int_0^{\frac{\pi}{2}} \sin x \, dx$と$\displaystyle B=\int_0^{\frac{\pi}{2}} x \sin x \, dx$を計算せよ.
(3)定積分$\displaystyle S=\int_0^{\frac{\pi}{2}} g(x) \sin x \, dx$を計算せよ.
(4)$a$が$0 \leqq a \leqq \pi$の範囲を動くとき,$(3)$の$S$を最大にする$a$の値を求めよ.
スポンサーリンク

「最大」とは・・・

 まだこのタグの説明は執筆されていません。