タグ「最大」の検索結果

12ページ目:全460問中111問~120問を表示)
北里大学 私立 北里大学 2015年 第3問
実数全体を定義域とする関数$f(x)$は奇関数で微分可能であるとする.さらに,$f^\prime(x)$も微分可能で$f^\prime(0)=0$を満たし,$x>0$の範囲で$f^{\prime\prime}(x)>0$であるとする.$y=f(x)$のグラフを$C_1$,$C_1$を$x$軸方向に$a$,$y$軸方向に$f(a)$だけ平行移動した曲線を$C_2$とする.ただし,$a$は正の定数とする.

(1)$f(0)$の値を求めよ.
(2)$f^\prime(x)$は偶関数であることを示せ.
(3)$C_1$と$C_2$の共有点の個数が$2$個であることを示し,その$2$点の$x$座標を求めよ.
(4)$C_1$と$C_2$で囲まれる図形の面積を$S(a)$とする.$a$が$0<a \leqq 3$の範囲を動くとき,$S(a)$を最大にする$a$の値を求めよ.
愛知工業大学 私立 愛知工業大学 2015年 第1問
次の$[ ]$を適当に補え.

(1)$x^2-2x-7<0$をみたす実数$x$の範囲は$[ア]$である.また,実数$x$に対して,$x$を超えない最大の整数を$[x]$とすると,${[x]}^2-2[x]-7<0$をみたす実数$x$の範囲は$[イ]$である.
(2)数列$\{a_n\}$は関係式
\[ a_1=1,\quad a_2=\frac{4}{3},\quad 3a_{n+2}-4a_{n+1}+a_n=0 \quad (n=1,\ 2,\ 3,\ \cdots) \]
をみたすとする.このとき,数列$\{a_{n+1}-pa_n\}$が公比$q$の等比数列になるような定数$p,\ q$の組は$(p,\ q)=[ウ]$であり,一般項$a_n$は$a_n=[エ]$である.
(3)$\displaystyle \frac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta}=\sqrt{3}-2$となるのは$\tan \theta=[オ]$のときであり,これをみたす$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$の値は$\theta=[カ]$である.
(4)$a$を実数とし,$\displaystyle f(a)=\int_{-1}^2 {(x-a |x|)}^2 \, dx$とする.$f(a)$は$a=[キ]$のとき,最小値$[ク]$をとる.
(5)$\tan x=t$とおくとき,$\sin 2x$を$t$で表すと$\sin 2x=[ケ]$である.また,$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{1}{\sin 2x} \, dx=[コ]$である.

\mon[(注)] 次の$(6),\ (7)$は選択問題である.

(6)大小$2$つのさいころを投げて,大きいさいころの出た目を$a$,小さいさいころの出た目を$b$とする.$2$次方程式$x^2+ax+b=0$が$2$つの異なる実数解をもつ確率は$[サ]$,重解をもつ確率は$[シ]$,実数解をもたない確率は$[ス]$である.
(7)平面上で,半径$3$の円$C_1$と半径$5$の円$C_2$が点$\mathrm{P}$で外接している.$1$本の直線が$\mathrm{P}$と異なる点$\mathrm{Q}$,$\mathrm{R}$で円$C_1,\ C_2$とそれぞれ接しているとき,$\mathrm{QR}=[セ]$である.また,直線$\mathrm{QP}$と円$C_2$との,$\mathrm{P}$と異なる交点を$\mathrm{S}$とするとき,$\mathrm{SR}=[ソ]$である.
南山大学 私立 南山大学 2015年 第3問
関数$f(x)=xe^{-x}$を考える.

(1)$0 \leqq x \leqq 4$の範囲で$f(x)$の増減と凹凸を調べ,$0 \leqq x \leqq 4$の範囲で$y=f(x)$のグラフをかけ.
(2)$t$を正の数とし,$y=f(x)$のグラフと$x$軸,および直線$x=t$と$x=2t$で囲まれた図形の面積$S(t)$を$t$の式で表せ.
(3)$(2)$の$S(t)$が最大となる$t$の値を求めよ.また,$S(t)$の最大値を求めよ.
獨協医科大学 私立 獨協医科大学 2015年 第1問
次の問いに答えなさい.

(1)定数$a$を正の実数とする.関数
\[ f(\theta)=4 \sin 2\theta+6 \cos^2 \theta+4a(\sin \theta+2 \cos \theta)+a^2+1 \]
の$0 \leqq \theta \leqq \pi$における最大値を$M$,最小値を$m$とする.
$t=\sin \theta+2 \cos \theta$とおく.$f(\theta)$を$t$を用いて表すと
\[ f(\theta)=[ア]t^2+4at+a^2-[イ] \]
である.
$M=a^2+[ウ] \sqrt{[エ]}a+[オ]$であり,これを与える$\theta$の値を$\theta_0$とすると,$\displaystyle \tan \theta_0=\frac{[カ]}{[キ]}$である.
また,$M-m=14$となる$a$の値は,$a=\sqrt{[ク]}-\sqrt{[ケ]}$である.
(2)定数$m$を正の整数とする.
$xy$平面上に$2$点$\mathrm{A}(21,\ 0)$,$\mathrm{B}(0,\ m)$がある.点$(1,\ 0)$と直線$\mathrm{AB}$との距離を$d$とすると
\[ d=\frac{[コサ]m}{\sqrt{m^2+[シスセ]}} \]
である.
$d$が有理数となるような$m$の値は全部で$[ソ]$個あり,そのうち$m$の値が最大のものは$m=[タチツ]$である.
また,$d$が整数となるとき,$m=[テト]$,$d=[ナニ]$である.
中央大学 私立 中央大学 2015年 第2問
ある鉄道会社では平成$26$年$3$月まで,最低運賃$130$円から$1000$円まで$10$円きざみで運賃が設定されていた.この年$4$月からの消費税率の引き上げに伴い,次のように運賃を改定することにした.

\mon[$①$] $\mathrm{IC}$カードを利用する場合
改定前の運賃に$108/105$を乗じ,$1$円未満の端数を切り捨て,$1$円単位にした額を新運賃とする.
\mon[$②$] 券売機等で発売する切符を利用する場合
改定前の運賃に$108/105$を乗じ,$10$円未満の端数を切り上げ,$10$円単位とした額を新運賃とする.

以下の問いに答えよ.

(1)切符を利用する場合,$20$円の値上げとなるような改定前運賃の範囲を求めよ.
(2)運賃改定後,$\mathrm{IC}$カードを利用した場合と,切符を利用した場合で運賃の差が最大となるような改定前運賃をすべて求めよ.
(3)切符を利用する場合の規則を,$10$円未満の端数を切り上げるのではなく,四捨五入する計算方法に変えたとする.このとき,値上げにならない運賃の範囲を求めよ.
東北工業大学 私立 東北工業大学 2015年 第1問
$x$の$2$次関数$y=x^2-4kx-k^2+12k-2$について考える.

(1)この関数のグラフの軸は直線$x=[ア][イ]k$である.また,この関数の最小値は$-[ウ][エ]k^2+12k-2$である.
(2)この関数の定義域を$1 \leqq x \leqq 5$とし,$k=-1$とすると,この関数の値域は$-[オ][カ] \leqq y \leqq [キ][ク]$である.
(3)この関数の定義域を$x \leqq 2$とすると,この関数の最小値は$k=[ケ][コ]$のときに最大となる.
津田塾大学 私立 津田塾大学 2015年 第1問
次の問いに答えよ.

(1)不等式$(|x-1|-1)(y-1)>0$の表す領域を図示せよ.
(2)平面上の直線$\displaystyle y=\frac{1}{2}x+1$に関して点$(2,\ 7)$と対称な点の座標を求めよ.
(3)$3$辺の長さが$x,\ 1-2x,\ 2-2x$である直方体がある.このような直方体のなかで体積が最大となるものの体積を求めよ.
東京女子大学 私立 東京女子大学 2015年 第3問
$xy$平面上の曲線$y=-x^2-(a+2)x-2a+1$を$C$とし,直線$y=-x-1$を$L$とする.このとき,以下の設問に答えよ.

(1)$C$と$L$は,定数$a$の値に関係なく,定点$\mathrm{P}$を通る.$\mathrm{P}$の座標を求めよ.
(2)$C$と$L$が$\mathrm{P}$と異なる点$\mathrm{Q}$でも交わり,かつ,$\mathrm{Q}$の$x$座標が$\mathrm{P}$の$x$座標よりも大きくなるような最大の整数$a$を求めよ.
(3)$(2)$で求めた整数$a$に対し,$C$と$L$で囲まれた図形の面積を求めよ.
東北学院大学 私立 東北学院大学 2015年 第4問
自然数$n$に対し,次の問いに答えよ.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.

(1)$9^n$が$n$桁の整数となる最大の$n$を求めよ.
(2)${1.2}^n \geqq 10000$を満たす最小の$n$を求めよ.
神奈川大学 私立 神奈川大学 2015年 第1問
次の空欄$(\mathrm{a})$~$(\mathrm{g})$を適当に補え.

(1)不等式$|3x-5|<2x+1$を満たす$x$の値の範囲は$[$(\mathrm{a])$}$である.
(2)$t>0$とする.$2$つのベクトル$\overrightarrow{a}=(t+3,\ t-1)$と$\overrightarrow{b}=(-1,\ t)$が垂直であるとき,$t=[$(\mathrm{b])$}$である.
(3)白い玉が$3$個,赤い玉が$2$個入っている袋がある.袋から玉を$1$つ取り出し色を確かめ袋に戻す操作を$3$回行う.このとき,$2$回以上白い玉が出る確率は$[$(\mathrm{c])$}$である.

(4)$\displaystyle \lim_{h \to 0} \frac{e^{2h+2}-e^2}{h}=[$(\mathrm{d])$}$である.

(5)$8$つの数の集まり$\{-2,\ -1,\ 0,\ 1,\ 2,\ 3,\ 4,\ 5\}$を$2$組に分け,それぞれの組に属する数の和を考える.たとえば,
$\{-1,\ 0,\ 2,\ 4,\ 5\} \text{と} \{-2,\ 1,\ 3\}$
という組み分けについては,$10$と$2$である.このとき,
「どんな組み分けについても,少なくとも一方の和は$a$以上である」
という主張が成立するような数$a$のうち最大のものは$[$(\mathrm{e])$}$である.

(6)$\displaystyle \int_1^x \log t \, dt=[$(\mathrm{f])$}$であるので,$\displaystyle f(x)=\int_1^x (x-1) \log t \, dt$のとき,$f^\prime(x)=[$(\mathrm{g])$}$である.
スポンサーリンク

「最大」とは・・・

 まだこのタグの説明は執筆されていません。