タグ「最大値」の検索結果

6ページ目:全1143問中51問~60問を表示)
佐賀大学 国立 佐賀大学 2016年 第3問
実数$a,\ b$は$a \geqq 0$,$b \geqq 0$,$a^2+b^2=1$を満たしているとする.このとき,次の問に答えよ.

(1)定積分
\[ S=\int_0^{\frac{\pi}{2}} |a \sin x-b \cos x| \, dx \]
を$a,\ b$を用いて表せ.
(2)$S$の最大値,最小値とそのときの$a,\ b$の値をそれぞれ求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2016年 第4問
サイコロを何回か振って最後に出た目を得点とするゲームを行う.

(1)サイコロを$1$回だけ振ることができるときの得点の期待値$E_1$を求めよ.
(2)サイコロを$2$回まで振ることができるとき,$1$回目に$m$以上の目が出たらそこでやめ,$m$より小さい目が出たら$2$回目を振ることにする.このときの得点の期待値$E_2(m)$を$m$を用いて表し,$E_2(m)$が最大となる$m$を求めよ.
(3)$n$を$2$以上の自然数,$m_1,\ \cdots,\ m_{n-1}$を$6$以下の自然数とする.$n$回までサイコロを振ることができるとき,$i$回目に$m_{n-i}$以上の目が出たらそこでやめ,$m_{n-i}$より小さい目が出たら$i+1$回目を振るという規則でサイコロを振り続ける.ただし,$n$回サイコロを振ったらそこでやめる.このときの得点の期待値を$E_n(m_1,\ \cdots,\ m_{n-1})$とする.以下の問いに答えよ.

(i) $E_3(m_1,\ m_2)$を$E_2(m_1)$,$m_2$を用いて表し,$E_3(m_1,\ m_2)$が最大となる$m_1,\ m_2$とそのときの$E_3(m_1,\ m_2)$の値を求めよ.
(ii) $n \geqq 4$とする.$E_{n-1}(m_1,\ \cdots,\ m_{n-2})$の最大値を$e_{n-1}$とすると,$E_n(m_1,\ \cdots,\ m_{n-1})$が最大となるのは,$E_{n-1}(m_1,\ \cdots,\ m_{n-2})$が$e_{n-1}$となり,かつ$m_{n-1}$が$e_{n-1}$以上の最小の自然数となるときである.このことを示せ.

ただし,得点が$k$となる確率を$p(k)$としたとき,
\[ p(1)+2p(2)+3p(3)+4p(4)+5p(5)+6p(6) \]
を得点の期待値とよぶ.
琉球大学 国立 琉球大学 2016年 第4問
$N$を$3$以上の自然数とする.

$1$から$N$までの数字が$1$つずつ書かれた$N$枚のカードを袋に入れ,「無作為に$1$枚のカードを取り出し,そのカードを袋に戻さず次のカードを取り出す」という作業を$3$枚のカードを取り出すまで繰り返す.取り出された$3$枚のカードに書かれた数の最大値を$X$とする.
また,$1$から$N$までの数字が$1$つずつ書かれた$N$枚のカードを袋に入れ,「無作為に$1$枚のカードを取り出してはそれに書かれた数を記録し,袋に戻す」という作業を$3$回行い,記録された数の最大値を$Y$とする.
$n$を$N$以下の自然数とする.$X=n$となる確率を$p_n$とし,$Y=n$となる確率を$q_n$とする.
次の問いに答えよ.

(1)$p_3,\ q_1,\ q_2,\ q_3$を求めよ.
(2)$p_n$と$q_n$を求めよ.
九州工業大学 国立 九州工業大学 2016年 第3問
$a<0$,$b$を実数とする.楕円$C:x^2+4y^2=4$と直線$\ell:y=ax+b$が異なる$2$個の共有点$\mathrm{P}(x_1,\ y_1)$,$\mathrm{Q}(x_2,\ y_2) (x_1<x_2)$を持つとし,$\ell$に平行な直線$m$が第$1$象限の点$\mathrm{A}$において$C$と接しているとする.次に答えよ.

(1)$b$の値の範囲を$a$を用いて表せ.
(2)直線$m$の方程式を$a$を用いて表せ.
(3)$x_2-x_1$を$a,\ b$を用いて表せ.
(4)三角形$\mathrm{APQ}$の面積$S$を$a,\ b$を用いて表せ.
(5)$b$が$(1)$で求めた範囲を動くとき,$(4)$で求めた$S$の最大値を求めよ.
秋田大学 国立 秋田大学 2016年 第1問
$i$を虚数単位とする.複素数$z$が等式$|iz+3|=|2z-6|$を満たすとき,次の問いに答えよ.

(1)この等式を満たす点$z$全体は,どのような図形を表すか答えよ.
(2)$z-\overline{z}=0$を満たす$z$を求めよ.
(3)$|z+i|$の最大値を求めよ.
秋田大学 国立 秋田大学 2016年 第2問
$f(x)=x^2-3x$とする.次の問いに答えよ.

(1)$-3 \leqq x \leqq 3$における$f(x)$の最大値と最小値を求めよ.
(2)点$(3,\ -4)$から放物線$y=f(x)$に引いた接線の方程式を求めよ.
(3)放物線$y=f(x)$と$(2)$の接線で囲まれた図形の面積を求めよ.
九州工業大学 国立 九州工業大学 2016年 第4問
点$\mathrm{A}(1,\ 0)$および点$\displaystyle \mathrm{P}(\sqrt{3} \cos \theta,\ \sqrt{3} \sin \theta) \left( 0<\theta<\frac{\pi}{4} \right)$がある.$x$軸に関して点$\mathrm{P}$と対称な点を$\mathrm{Q}$とし,$2$点$\mathrm{P}$,$\mathrm{A}$を通る直線を$\ell$,$2$点$\mathrm{O}$,$\mathrm{Q}$を通る直線を$m$とする.次に答えよ.ただし,$\mathrm{O}$は原点を表す.

(1)$\sqrt{3} \cos \theta>1$を示せ.
(2)直線$\ell$の方程式と直線$m$の方程式を$\theta$を用いて表せ.
(3)直線$\ell$と直線$m$の交点$\mathrm{R}$の座標を$\theta$を用いて表せ.
(4)三角形$\mathrm{PAQ}$の面積を$S$とする.$\theta$が変化するとき,$S$の最大値とそのときの$\theta$の値を求めよ.
(5)$\theta$が$(4)$で求めた値をとるとき,$2$直線$\ell,\ m$および曲線$x^2+y^2=3 (x \geqq \sqrt{3} \cos \theta)$で囲まれた図形を$y$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
長崎大学 国立 長崎大学 2016年 第2問
$1$辺の長さが$2$の立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$がある.下の図$1$のように,$2$辺$\mathrm{BC}$,$\mathrm{CD}$上に,$\mathrm{BS}=\mathrm{CT}=x (0 \leqq x \leqq 2)$を満たす点$\mathrm{S}$,$\mathrm{T}$をとる.このとき,三角形$\mathrm{EST}$の面積の最大値と最小値を求めたい.以下の問いに答えよ.
(図は省略)

(1)上の図$2$を参考にして,三角形$\mathrm{OPQ}$において$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$,$\overrightarrow{\mathrm{OQ}}=\overrightarrow{q}$とおくとき,三角形$\mathrm{OPQ}$の面積は
\[ \frac{1}{2} \sqrt{|\overrightarrow{p|}^2 |\overrightarrow{q|}^2-(\overrightarrow{p} \cdot \overrightarrow{q})^2} \]
と表されることを証明せよ.
(2)$\overrightarrow{\mathrm{EF}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{EH}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{EA}}=\overrightarrow{c}$とおく.立方体の$1$辺の長さが$2$であることに注意して,$\overrightarrow{\mathrm{ES}}$,$\overrightarrow{\mathrm{ET}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$および$x$を用いて表せ.また,$|\overrightarrow{\mathrm{ES|}}^2$,$|\overrightarrow{\mathrm{ET|}}^2$を,それぞれ$x$の式として表せ.さらに,$\overrightarrow{\mathrm{ES}}$と$\overrightarrow{\mathrm{ET}}$の内積$\overrightarrow{\mathrm{ES}} \cdot \overrightarrow{\mathrm{ET}}$は,$x$によらない一定の値になることを示せ.
(3)上の$(1)$を利用して三角形$\mathrm{EST}$の面積$f(x)$を求めよ.
(4)$0 \leqq x \leqq 2$の範囲で,$f(x)$の最大値と最小値を求めよ.また,そのときの$x$の値も答えよ.
長崎大学 国立 長崎大学 2016年 第4問
楕円$\displaystyle x^2+\frac{y^2}{a^2}=1 (a>0)$と$y$軸の交点を$\mathrm{A}(0,\ a)$,$\mathrm{B}(0,\ -a)$とする.$\theta$が$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,点$\mathrm{P}(\cos \theta,\ a \sin \theta)$はこの楕円上を動く.以下の問いに答えよ.

(1)線分$\mathrm{AP}$の長さを$l$とする.$\displaystyle X=\sin \theta \left( -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2} \right)$のとき,$Y=l^2$となる関数を$Y=f(X)$とする.$f(X)$を$X$の式で表せ.
(2)$0<a<1$の場合.
$(1)$の関数$f(X)$の最大値を$a$を用いて表し,そのときの$X$の値を求めよ.
(3)$a=2$の場合.
$(1)$の関数$f(X)$の値が最大となるときの点$\mathrm{P}$を$\mathrm{P}_1$とする.$f(X)$の最大値と$\mathrm{P}_1$の座標を求めよ.また,点$\mathrm{A}(0,\ 2)$を中心とし点$\mathrm{P}_1$を通る円を,$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
秋田大学 国立 秋田大学 2016年 第3問
$b>0$,$a=2 \sqrt{3}b$とし,原点を$\mathrm{O}$とする座標平面上の楕円$\displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$を$E$とする.楕円$E$上の点$\mathrm{P}(x,\ y)$の媒介変数表示は$x=a \cos \theta$,$y=b \sin \theta (0 \leqq \theta<2\pi)$で与えられる.次の問いに答えよ.

(1)点$\mathrm{P}$で楕円$E$と共通の接線をもつ円を考える.このような円のうち,不等式$\displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2} \geqq 1$の表す領域内にある円を$C$とする.円$C$の半径を$r(\theta)$とするとき,$C$の中心を$\theta$と$r(\theta)$を用いて表せ.
(2)$2d=11b$とし,$4$つの頂点が$(d,\ d)$,$(-d,\ d)$,$(-d,\ -d)$,$(d,\ -d)$である正方形$F$を考える.点$\mathrm{P}$が楕円$E$上を動くとき,$(1)$の円$C$の中心は正方形$F$の周上を動くとする.このとき,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$に対して,$C$の半径$r(\theta)$を求めよ.
(3)$(2)$の$r(\theta)$の$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$における最大値は$\displaystyle \frac{5 \sqrt{5}}{2}b$であることを示せ.
スポンサーリンク

「最大値」とは・・・

 まだこのタグの説明は執筆されていません。