タグ「最大値」の検索結果

10ページ目:全1143問中91問~100問を表示)
早稲田大学 私立 早稲田大学 2016年 第2問
正方形$\mathrm{ABCD}$を底面,点$\mathrm{P}$を頂点とする正四角錐$\mathrm{PABCD}$に内接する球について考える.ただし,正四角錐とは,頂点と底面の正方形の中心を結ぶ直線が底面と垂直になる角錐である.線分$\mathrm{AB}$の中点を$\mathrm{M}$とし,線分$\mathrm{AM}$および線分$\mathrm{PM}$の長さをそれぞれ$a,\ b$とする.次の問に答えよ.

(1)内接する球の半径を$a,\ b$を用いて表せ.
(2)$\displaystyle x=\frac{b}{a}$と定めるとき,$\displaystyle \frac{\text{内接する球の表面積}}{\text{正四角錐$\mathrm{PABCD}$の表面積}}$を$x$で表わし,その最大値を求めよ.
(3)$(2)$で最大値をとるときの正四角錐$\mathrm{PABCD}$の体積を$a$を用いて表せ.
早稲田大学 私立 早稲田大学 2016年 第1問
次の問に答えよ.

(1)直線$-2x+4y+5=0$を$\ell$とする.点$\mathrm{A}(2,\ 4)$を通り,直線$\ell$に垂直な直線を$m$とし,同じく点$\mathrm{A}$を通り,$x$軸に平行な直線を$n$とする.直線$\ell$と直線$m$の交点を$\mathrm{B}$とし,直線$\ell$と直線$n$の交点を$\mathrm{C}$とするとき,次の各問いに答えよ.

(i) 点$\mathrm{B}$の座標は$([ア],\ [イ])$である.
(ii) 線分$\mathrm{AB}$の長さは$[ウ]$である.
(iii) 直線$\ell$上で線分$\mathrm{CB}$を$2:1$に外分する点を$\mathrm{D}$とし,直線$m$上で線分$\mathrm{AB}$を$3:2$に外分する点を$\mathrm{E}$とするとき,四角形$\mathrm{ACED}$の面積は$[エ]$である.

(2)座標平面上に定点$\mathrm{A}(-1,\ 0)$と$\mathrm{B}(1,\ 0)$が与えられているとし,動点$\mathrm{P}$,$\mathrm{Q}$は,それぞれ$\mathrm{A}$および$\mathrm{B}$とは一致しないところを動くものとするとき,次の各問いに答えよ.

(i) 点$\mathrm{P}(x,\ y)$が$\angle \mathrm{APB}={90}^\circ$を満たすように動くとき,点$\mathrm{P}$の$y$座標の最大値は$[オ]$である.
(ii) 点$\mathrm{Q}(x,\ y)$が$\angle \mathrm{AQB}={120}^\circ$を満たすように動くとき,点$\mathrm{Q}$の$y$座標の最大値は$[カ]$であり,また,点$\mathrm{Q}$が動いてできる曲線に$2$点$\mathrm{A}$,$\mathrm{B}$を付け加えた曲線を$C$とすると,曲線$C$が囲む部分の面積は$[キ]$である.

(3)$a$を正の実数とし,$\displaystyle a \neq \frac{1}{2}$であるとする.曲線$C:y=x^2-2x$上の$2$点$\mathrm{P}$,$\mathrm{Q}$を考える.点$\mathrm{P}$の座標を$\displaystyle \left( \frac{3}{2},\ -\frac{3}{4} \right)$とし,点$\mathrm{Q}$の座標を$(a+1,\ a^2-1)$とする.点$\mathrm{P}$を通り$\mathrm{P}$における$C$の接線に直交する直線を$\ell$とし,点$\mathrm{Q}$を通り$\mathrm{Q}$における$C$の接線に直交する直線を$m$とする.$2$直線$\ell$と$m$の交点が曲線$C$上にあるとき,次の各問いに答えよ.

(i) $a$の値は$[ク]$である.
(ii) $2$直線$\ell$,$m$と曲線$C$とで囲まれた領域で$x \geqq 0$を満たす部分の面積は$[ケ]$である.
早稲田大学 私立 早稲田大学 2016年 第4問
以下の問に答えよ.

(1)次の空欄にあてはまる式または数を記入せよ.
半径$1$の円$\mathrm{O}$に内接する長方形$\mathrm{ABCD}$がある.角$\mathrm{OAB}$を$\displaystyle x \left( 0<x<\frac{\pi}{2} \right)$とするとき,長方形$\mathrm{ABCD}$の面積は$[ア]$となる.したがって,$x=[イ]$のとき最大面積$[ウ]$をとる.
(2)半径$1$の円$\mathrm{O}$に内接する$n$角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_n$の内角
\[ \mathrm{A}_k \mathrm{A}_{k+1} \mathrm{A}_{k+2} \quad (k=1,\ 2,\ \cdots,\ n,\ n \geqq 3 \;;\; \text{ただし,} \mathrm{A}_{n+1}=\mathrm{A}_1,\ \mathrm{A}_{n+2}=\mathrm{A}_2) \]
がすべて$\alpha (0<\alpha<\pi)$に等しいとする.このとき,次の問に答えよ.

(i) $a_k (k=1,\ 2,\ \cdots,\ n)$は弧$\mathrm{A}_k \mathrm{A}_{k+1}$の長さを表すとする.角$\displaystyle \mathrm{OA}_k \mathrm{A}_{k+1}=\theta_k \left( 0<\theta_k<\frac{\pi}{2} \right)$とおくとき,$a_k$,$a_{k+1}$および$a_k+a_{k+1}$を,$\theta_k$,$\alpha$を用いて表せ.
(ii) $n$が奇数のとき,$n$角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_n$は正$n$角形となることを示せ.
(iii) $n$が偶数のとき,$\theta_1=\theta_3=\cdots =\theta_{n-1}$を示せ.さらに,その等しい角を$\theta$とおいて,$n$角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_n$の面積$S_n(\theta)$を$\alpha$,$\theta$を用いて表せ.
\mon[$\tokeishi$] $\alpha$を$n$の式で表し,$(ⅲ)$における$S_n(\theta)$の最大値とそのときの$\theta$を$n$の式で表せ.

(図は省略)
早稲田大学 私立 早稲田大学 2016年 第4問
$3$点$(0,\ 0)$,$(1,\ 0)$,$(0,\ 1)$を頂点とする三角形を$\mathrm{D}$とする.$\mathrm{D}$の$1$辺を選び,その中点を中心として$\mathrm{D}$を${180}^\circ$回転させる.このようにして$\mathrm{D}$から得られる$3$個の三角形からなる集合を$S_1$とする.$S_1$から一つ三角形を選び,さらにその三角形の$1$辺を選び,その中点を中心としてその三角形を${180}^\circ$回転させる.このようにして$S_1$から得られる三角形すべてからなる集合を$S_2$とする.$S_2$は$7$個の三角形からなる集合であり,その中には$\mathrm{D}$も含まれる.一般に,自然数$n$に対して$S_n$まで定義されたとき,$S_n$から一つ三角形を選び,さらにその三角形の$1$辺を選び,その中点を中心としてその三角形を${180}^\circ$回転させる.このようにして$S_n$から得られる三角形すべてからなる集合を$S_{n+1}$とする.次の問に答えよ.

(1)$S_3$の要素を全て図示せよ.
(2)$m$を自然数とする.$S_{2m}$から一つ三角形を選び,その頂点それぞれと原点$(0,\ 0)$との距離の最大値を考える.三角形の選び方をすべて考えたときの,この最大値の最大値$d_{2m}$を求めよ.
日本女子大学 私立 日本女子大学 2016年 第1問
曲線$y=\sin x$上の点$\mathrm{P}$の$x$座標を$\theta$とする.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.この曲線上の点$\mathrm{P}$における法線が$x$軸と交わる点を$\mathrm{Q}$とおき,点$\mathrm{P}$から$x$軸に下ろした垂線を$\mathrm{PR}$とする.このとき,$\triangle \mathrm{PQR}$の面積の最大値を求めよ.
学習院大学 私立 学習院大学 2016年 第2問
平面上の点$\mathrm{P}(s,\ t)$が楕円$\displaystyle C:\frac{x^2}{8}+\frac{y^2}{2}=1$上を動くとき,$\displaystyle \frac{t-2}{s-4}$の最大値を求めよ.また,最大値を与える$s,\ t$を求めよ.
学習院大学 私立 学習院大学 2016年 第4問
連立不等式
\[ 2x-y-2 \geqq 0,\quad x \leqq \frac{5}{2},\quad y \geqq 1 \]
の表す領域を$D$とする.点$\mathrm{P}(x,\ y)$が領域$D$を動くとき,$\displaystyle \frac{y}{x^2}$の最大値と最小値を求めよ.また,それぞれの値を与える点$\mathrm{P}$の座標を求めよ.
東北学院大学 私立 東北学院大学 2016年 第2問
不等式
\[ x^2+y^2-2x-2y+1 \leqq 0 \]
の表す領域を$A$とし,不等式
\[ \log_{10}(y-1)-2 \log_{10}|x-1| \geqq 0 \]
で表される領域を$B$とする.このとき,以下の問いに答えよ.

(1)$A$を図示せよ.
(2)$B$を図示せよ.
(3)点$(x,\ y)$が$A$と$B$の共通部分$A \cap B$を動くとき,$x+y$の最大値および最小値を求めよ.
久留米大学 私立 久留米大学 2016年 第4問
座標平面上で,関数$f(x)=\sqrt{6-x}$で表される曲線$C:y=f(x)$を考える.$4 \leqq t \leqq 5$を満たす実数$t$に対して,曲線$C$上の点$(t,\ f(t))$と$(t,\ 0)$,$(2,\ 0)$および$(2,\ f(t))$の$4$つの点を頂点とする四角形の面積を$S(t)$とする.

(1)$S(t)$を$t$を用いて表すと$[$9$]$となる.
(2)$S(t)$は$t=[$10$]$のとき最大値$[$11$]$をとり,$t=[$12$]$のとき最小値$[$13$]$をとる.
(3)区間$[4,\ 5]$を$n$等分してその端点と分点を小さい順に$t_0=4,\ t_1,\ t_2,\ \cdots,\ t_n=5$とする.極限値$\displaystyle \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n S(t_k)$の値を求めると$[$14$]$となる.ただし,$n$は正の整数とする.
東北医科薬科大学 私立 東北医科薬科大学 2016年 第2問
実数$t$は$0 \leqq t<2\pi$を動くとし,点$\mathrm{P}(2 \cos t,\ 2 \sin t)$,点$\mathrm{Q}(-2 \sin t,\ 2 \cos t)$,点$\displaystyle \mathrm{A} \left( \frac{\sqrt{3}-1}{2},\ \frac{\sqrt{3}+1}{2} \right)$を考える.このとき,次の問に答えなさい.

(1)原点を$\mathrm{O}(0,\ 0)$とおく.このとき$\mathrm{OP}=[ア]$で,三角形$\mathrm{OPQ}$の面積は$[イ]$である.
(2)点$\mathrm{P}$,$\mathrm{A}$,$\mathrm{Q}$が一直線に並ぶのは$\displaystyle t=\frac{[ウ]}{[エ]} \pi$のときである.
(3)三角形$\mathrm{PAQ}$の面積は$\displaystyle S(t)=[オ]-[カ] \sin \left( t+\frac{[キ]}{[ク]} \pi \right)$である.また$S(t)$は$\displaystyle t=\frac{[ケ]}{[コ]} \pi$のとき最大値$[サ]$をとる.
スポンサーリンク

「最大値」とは・・・

 まだこのタグの説明は執筆されていません。