タグ「最初」の検索結果

11ページ目:全139問中101問~110問を表示)
浜松医科大学 国立 浜松医科大学 2012年 第2問
$24$時間診療業務を休みなく行う病院において,$40$日間で$1$万個使用される医療材料$\mathrm{A}$について考える.$\mathrm{A}$の使用頻度は常に一定であり,$1$日の時間帯や曜日による変動は全くないものとする.さて,病院における在庫管理では,「品切れ」が起きないこと,「コスト」をできるだけ低くすること,この$2$つが肝要である.医療材料$\mathrm{A}$の保管費は,その保管期間に比例し,$1$個につき$10$日間で$1$円である.また,納入業者に$\mathrm{A}$を注文すれば,注文量の多少に関わらず,品物が届いた時点で$200$円の事務費がかかる.なお,担当者は$\mathrm{A}$の在庫量$y$の時間的推移を把握しており,品切れになる直前という最適のタイミングで,注文した量が届くものとする.われわれは,保管費と事務費の和$S$を最小にするような注文の仕方を求める.以下の問いに答えよ.

(1)$\mathrm{A}$の在庫は最初$1$万個あったとする.そして注文する量は毎回一定として,$x$で表す.このとき,時間$t$による在庫量$y$の変化を表すグラフを,横軸を時間の$t$軸とする座標平面上に図示せよ.(図示する際には,適当な$x$の値を自ら設定すること.)
以下,$1$回目の注文によって品物の届く時点以降の$y$の変化について考察する.
(2)周期的な$y$の変動に留意して,平均在庫量を求めよ.
(3)長期にわたる保管費,事務費の総額をそれぞれ見積もり,保管費と事務費の和$S$の「$1$日当たりの平均コスト」を求めよ.さらに,この$1$日当たりの平均コストを最小にするような$x$の値を求めよ.
明治大学 私立 明治大学 2012年 第1問
次の各設問の$[1]$から$[9]$までの空欄にあてはまる数値を入れよ.

(1)関数$\displaystyle y=3 \sin \left( 2x- \frac{2}{3} \pi \right)$のグラフは$y=3 \sin 2x$のグラフを$x$軸方向に$[1]$だけ平行移動したものであり,その正で最小の周期は$[2]$である.
(2)座標平面上の$\triangle \mathrm{ABC}$において,線分$\mathrm{AB}$を$2:1$に内分する点$\mathrm{P}$の座標が$(1,\ 5)$,線分$\mathrm{AC}$を$4:1$に外分する点$\mathrm{Q}$の座標が$(3,\ -3)$,$\triangle \mathrm{ABC}$の重心の座標が$(0,\ 2)$であるとき,点$\mathrm{A}$の座標は$([3],\ [4])$である.
(3)関数$\displaystyle y=\left( \log_3 \frac{x}{9} \right)^3 + 6\log_{\frac{1}{3}} \sqrt{3x} (1 \leqq x \leqq 27)$の最小値は$[5]$,最大値は$[6]$である.また,最大値$[6]$をとるときの$x$は$[7]$である.
(4)水を満たしたある容器の底に穴を開けてから$x$分後における容器内の水深を$y$メートルとすると,$y$は次式で表される.ただし,$0 \leqq x \leqq 90$とする.
\[ y = 0.9 \times 10^{-4}x^2 - 1.8\times 10^{-2} x +1 \]
$x_1$分から$x_2$分の間に,容器から出た水の量を$\int_{x_1}^{x_2} y\, dx$とする.最初の$1$分間($x_1=0,\ x_2=1$)に出た水の量に対する$5$分から$6$分の間($x_1=5,\ x_2=6$)に出た水の量の割合は約$[8] \%$である.容器内の水深$y$が,$x=0$のときの半分になるのは約$[9]$分後である.
法政大学 私立 法政大学 2012年 第1問
Aは$2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 8$と書かれた札を,Bは$2,\ 4,\ 6,\ 8$と書かれた札を手元に持ち,札の数字が書かれた面$(\text{表})$はふせられた状態である.両者は札をよくかき混ぜた後$n$枚の札を引き,表にして数字を比べる.ただし,$n=1$のときは数字の大きい方が勝ちで,両者の数字が等しいときは引き分けとする.このとき,次の問いに答えよ.

(1)$n=1$とする.

(2)引き分けとなる確率を求めよ.
(3)勝った者は自分が引いた札の数字が得点となり,その他の場合はそれぞれの得点が0となるとき,Aの得点の期待値を求めよ.

(4)$n=2$とする.Aの札の数字の合計と,Bの札の数字の合計が等しくなる確率を求めよ.
(5)$n=1$とする.数直線上にある点Pを,Aが勝ったときは正の方向に2だけ,Bが勝ったときは負の方向に1だけ動かす.ただし,引き分けのときは動かさない.こうした試行を4回繰り返すとき,最初に原点にあった点Pが4回の試行後に原点に位置する確率を求めよ.なお,AとBが引いた札は,試行が終わるごとに各々の手元に戻し,よくかき混ぜて次の試行を行うものとする.
立教大学 私立 立教大学 2012年 第1問
次の空欄ア~シに当てはまる数または式を記入せよ.

(1)方程式$x^3-4x^2+ax+b=0$の$1$つの解が$1-2i$であるとき,実数解は$[ア]$であり,$a=[イ]$,$b=[ウ]$である.ただし,定数$a,\ b$は実数とし,$i$は虚数単位とする.
(2)サイコロを続けて$2$回振り,最初に出た目が$a$,次に出た目が$b$ならば座標平面上に直線$\ell:y=ax-b$を描く.この試行において,直線$\ell$が放物線$y=x^2$と相異なる$2$点で交わる確率は$[エ]$である.
(3)不等式$x^2+y^2+6x+4y-12 \leqq 0$の表す領域の面積は$[オ]$である.
(4)$\displaystyle x=\frac{1}{\sqrt{2}-1},\ y=\frac{1}{\sqrt{2}+1}$であるとき,$x^3+y^3-2xy^2=[カ]$である.
(5)$0 \leqq \theta < 2\pi$のとき,$\sqrt{3}\cos \theta-\sin \theta=r \sin (\theta +\alpha)$の形に変形すると,$r=[キ]$,$\alpha=[ク]$である.ただし,$0 \leqq \alpha < 2\pi$とする.
(6)実数からなる数列$\{a_n\}$が$a_{n+1}^3=2a_n^2,\ a_1=4$を満たすとき,$\log_2a_n=[ケ]$である.
(7)図のように東西$6$本,南北$6$本の道路で区画された場所がある.南西の端の地点$\mathrm{A}$から北東の端の地点$\mathrm{B}$へ行く最短ルートは$[コ]$通りある.
(図は省略)
(8)$3$次関数$f(x)=x^3-3a^2x+b (a>0)$が極大値$13$と極小値$-19$を持つならば$a=[サ]$,$b=[シ]$である.
北海学園大学 私立 北海学園大学 2012年 第5問
初項が$4$,公差が$8$の等差数列を,初項から順に,$2n$個の項が第$n$群に含まれるように分けていく.

$4,\ 12 \ | \ 20,\ 28,\ 36,\ 44 \ | \ 52,\ 60,\ 68,\ 76,\ 84,\ 92 \ | \ \cdots$
{\small 第$1$群} \qquad {\small 第$2$群} \qquad\qquad\qquad {\small 第$3$群}

たとえば,$60$はこの数列の第$3$群の小さい方から$2$番目の項である.ただし,縦線$|$は群の区切りを表し,$n=1,\ 2,\ 3,\ \cdots$である.

(1)第$n$群の最初の項と最後の項を,それぞれ$n$を用いて表せ.
(2)第$n$群の項の総和$S_n$を$n$を用いて表せ.また,$\displaystyle \frac{S_n}{n} \leqq 2012$を満たす最大の$n$を求めよ.
(3)$2012$は第何群の小さい方から何番目の項であるか答えよ.
成城大学 私立 成城大学 2012年 第1問
あるタカは$\mathrm{A}$地点と$\mathrm{B}$地点のどちらか一方に確率$\displaystyle \frac{1}{2}$で最初に現れる.どちらの地点でも,餌を得ると直ちに巣に帰るが,餌が得られないともう一方の地点に現れてから巣に帰る.タカが各地点に現れたとき,餌を得る確率はどちらの地点でも$\displaystyle \frac{3}{5}$であり,一度巣に帰ると再び両地点に現れることはないとして,以下の問いに答えよ.

(1)このタカが$\mathrm{A}$地点と$\mathrm{B}$地点の両方に現れる確率はいくらか.
(2)このタカが$\mathrm{A}$地点に現れる確率はいくらか.
(3)このタカがどちらかの地点で餌を得る確率はいくらか.
法政大学 私立 法政大学 2012年 第1問
$0$から$3$までの数字が$1$つずつ書いてある$4$個の玉が入った袋がある.

(1)袋から$1$個の玉を取り出してそれに書かれた数を確認してから玉を袋に戻し,もう一度袋から$1$個の玉を取り出すとき,最初に取り出された玉に書かれた数と後に取り出された玉に書かれた数との積の期待値を求めよ.
(2)袋から$2$個の玉を同時に取り出すとき,それらに書かれた$2$個の数の積の期待値を求めよ.
(3)袋から$1$個の玉を取り出してそれに書かれた数$k$を確認してから玉を袋に戻し,今度は袋から$k$個の玉を同時に取り出すとき,最初に取り出された玉に書かれた数と後に取り出された玉に書かれた$k$個の数の,全部で$(k+1)$個の数の積の期待値を求めよ.ただし,$0$個の玉を取り出すとは玉を取り出さないこととし,$1$個の数の積とはその数のこととする.
愛知学院大学 私立 愛知学院大学 2012年 第4問
一辺の長さ$1$の正六角形の頂点を時計まわりの順に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.動点$\mathrm{P}$は最初は点$\mathrm{A}$上にある.コインを投げ,表が出たら$2$,裏が出たら$1$だけ$\mathrm{P}$を正六角形上で時計まわりに動かすゲームを考える.動点$\mathrm{P}$が最初にちょうど点$\mathrm{A}$上に戻ったときゲーム終了とする.


(1)ちょうど$1$周してゲーム終了となる確率は$\displaystyle \frac{[ア][イ]}{[ウ][エ]}$である.

(2)ちょうど$2$周してゲーム終了となる確率は$\displaystyle \frac{[オ][カ][キ]}{\kakkofour{ク}{ケ}{コ}{サ}}$である.
大阪市立大学 公立 大阪市立大学 2012年 第3問
三角形ABCの頂点A,B,Cは反時計回りに並んでいるものとする.点Pはいずれかの頂点の位置にあり,1枚の硬貨を1回投げるごとに,表が出れば時計回りに隣の頂点へ,裏が出れば反時計回りに隣の頂点へ,移動するものとする.点Pは最初,頂点Aの位置にあったとする.硬貨を$n$回投げたとき,点Pが頂点Aの位置へ戻る確率を$a_n$で表す.次の問いに答えよ.

(1)$n \geqq 2$に対し$a_n$を$a_{n-1}$を用いて表せ.
(2)$a_n$を求めよ.
大阪市立大学 公立 大阪市立大学 2012年 第2問
三角形ABCの頂点A,B,Cは反時計回りに並んでいるものとする.点Pはいずれかの頂点の位置にあり,1枚の硬貨を1回投げるごとに,表が出れば時計回りに隣の頂点へ,裏が出れば反時計回りに隣の頂点へ,移動するものとする.点Pは最初,頂点Aの位置にあったとする.硬貨を$n$回投げたとき,点Pが頂点Aの位置に戻る確率を$a_n$で表す.次の問いに答えよ.

(1)$n \geqq 2$に対し$a_n$を$a_{n-1}$を用いて表せ.
(2)$a_n$を求めよ.
スポンサーリンク

「最初」とは・・・

 まだこのタグの説明は執筆されていません。