タグ「最初」の検索結果

1ページ目:全139問中1問~10問を表示)
一橋大学 国立 一橋大学 2016年 第3問
硬貨が$2$枚ある.最初は$2$枚とも表の状態で置かれている.次の操作を$n$回行った後,硬貨が$2$枚とも裏になっている確率を求めよ.


\mon[(操作)] $2$枚とも表,または$2$枚とも裏のときには$2$枚の硬貨両方を投げ,表と裏が$1$枚ずつのときには,表になっている硬貨だけを投げる.
九州大学 国立 九州大学 2016年 第4問
自然数$n$に対して,${10}^n$を$13$で割った余りを$a_n$とおく.$a_n$は$0$から$12$までの整数である.以下の問いに答えよ.

(1)$a_{n+1}$は$10a_n$を$13$で割った余りに等しいことを示せ.
(2)$a_1,\ a_2,\ \cdots,\ a_6$を求めよ.
(3)以下の$3$条件を満たす自然数$N$をすべて求めよ.

(i) $N$を十進法で表示したとき$6$桁となる.
(ii) $N$を十進法で表示して,最初と最後の桁の数字を取り除くと$2016$となる.
(iii) $N$は$13$で割り切れる.
九州大学 国立 九州大学 2016年 第4問
自然数$n$に対して,${10}^n$を$13$で割った余りを$a_n$とおく.$a_n$は$0$から$12$までの整数である.以下の問いに答えよ.

(1)$a_{n+1}$は$10a_n$を$13$で割った余りに等しいことを示せ.
(2)$a_1,\ a_2,\ \cdots,\ a_6$を求めよ.
(3)以下の$3$条件を満たす自然数$N$をすべて求めよ.

(i) $N$を十進法で表示したとき$6$桁となる.
(ii) $N$を十進法で表示して,最初と最後の桁の数字を取り除くと$2016$となる.
(iii) $N$は$13$で割り切れる.
信州大学 国立 信州大学 2016年 第6問
群に分けられた数列
\[ 1 \;\bigg|\; 2,\ 4,\ 2 \;\bigg|\; 3,\ 6,\ 9,\ 6,\ 3 \;\bigg|\; 4,\ 8,\ 12,\ 16,\ 12,\ 8,\ 4 \;\bigg|\; \cdots \]
を,第$n$群が$(2n-1)$個の項
\[ n,\ 2n,\ \cdots,\ (n-2)n,\ (n-1)n,\ n^2,\ (n-1)n,\ (n-2)n,\ \cdots,\ 2n,\ n \]
からなるものとする.このとき,以下の問いに答えよ.

(1)与えられた数列の初項から第$n$群の末項までの項数を求めよ.
(2)第$n$群に含まれる項の総和を求めよ.
(3)最初に現れる$2016$は,この数列の第何項か.
信州大学 国立 信州大学 2016年 第4問
群に分けられた数列
\[ 1 \;\bigg|\; 2,\ 4,\ 2 \;\bigg|\; 3,\ 6,\ 9,\ 6,\ 3 \;\bigg|\; 4,\ 8,\ 12,\ 16,\ 12,\ 8,\ 4 \;\bigg|\; \cdots \]
を,第$n$群が$(2n-1)$個の項
\[ n,\ 2n,\ \cdots,\ (n-2)n,\ (n-1)n,\ n^2,\ (n-1)n,\ (n-2)n,\ \cdots,\ 2n,\ n \]
からなるものとする.このとき,以下の問いに答えよ.

(1)与えられた数列の初項から第$n$群の末項までの項数を求めよ.
(2)第$n$群に含まれる項の総和を求めよ.
(3)最初に現れる$2016$は,この数列の第何項か.
千葉大学 国立 千葉大学 2016年 第1問
$1$個のさいころを$2$回投げ,最初に出た目を$a$,$2$回目に出た目を$b$とする.$2$次方程式$x^2-ax+b=0$について,次の問いに答えよ.

(1)実数解は存在すれば正であることを示せ.
(2)実数解の個数が$1$となる確率を求めよ.
(3)実数解の個数が$2$となる確率を求めよ.
千葉大学 国立 千葉大学 2016年 第1問
$1$個のさいころを$2$回投げ,最初に出た目を$a$,$2$回目に出た目を$b$とする.$2$次方程式$x^2-ax+b=0$について,次の問いに答えよ.

(1)実数解は存在すれば正であることを示せ.
(2)実数解の個数が$1$となる確率を求めよ.
(3)実数解の個数が$2$となる確率を求めよ.
大分大学 国立 大分大学 2016年 第3問
中心が原点$\mathrm{O}$で半径が$a$の定円$C_1$上を,半径$\displaystyle \frac{a}{4}$の円$C_2$が内接しながらすべることなく回転する.円$C_2$上の点$\mathrm{P}$は最初に点$\mathrm{A}(a,\ 0)$にあるとする.円$C_2$の中心を$\mathrm{B}$とするとき,以下の問いに答えなさい.

(1)$\angle \mathrm{AOB}=\theta$とする.$\overrightarrow{\mathrm{BP}}$を$a,\ \theta$で表しなさい.
(2)$\overrightarrow{\mathrm{OP}}$を$a,\ \theta$で表しなさい.
(3)$0 \leqq \theta \leqq 2\pi$のとき,動点$\mathrm{P}$が移動する距離を求めなさい.
鳥取大学 国立 鳥取大学 2016年 第2問
白玉が$6$個,赤玉が$5$個入った袋がある.以下の問いに答えよ.

(1)袋の中の玉がなくなるまで袋から玉を$1$個ずつ取り出すとき,最初に赤玉が連続して$4$個出て,かつ最後に赤玉が出る確率を求めよ.
(2)袋の中の玉がなくなるまで袋から玉を$1$個ずつ取り出すとき,白玉と赤玉が交互に出る確率を求めよ.
(3)袋から$5$個の玉を同時に取り出すとき,白玉$1$個につき$1000$円をもらい,赤玉$1$個につき$500$円を支払うものとする.このとき,もらった金額の合計額が支払った金額の合計額を上回る確率を求めよ.
九州大学 国立 九州大学 2016年 第3問
袋の中に,赤玉が$15$個,青玉が$10$個,白玉が$5$個入っている.袋の中から玉を$1$個取り出し,取り出した玉の色に応じて,以下の操作で座標平面に置いたコインを動かすことを考える.


\mon[(操作)] コインが点$(x,\ y)$にあるものとする.赤玉を取り出したときにはコインを点$(x+1,\ y)$に移動,青玉を取り出したときには点$(x,\ y+1)$に移動,白玉を取り出したときには点$(x-1,\ y-1)$に移動し,取り出した球は袋に戻す.

最初に原点$(0,\ 0)$にコインを置き,この操作を繰り返して行う.指定した回数だけ操作を繰り返した後,コインが置かれている点を到達点と呼ぶことにする.このとき,以下の問いに答えよ.

(1)操作を$n$回繰り返したとき,白玉を$1$度だけ取り出したとする.このとき,到達点となり得る点をすべて求めよ.
(2)操作を$n$回繰り返したとき,到達点となり得る点の個数を求めよ.
(3)座標平面上の$4$点$(1,\ 1)$,$(-1,\ 1)$,$(-1,\ -1)$,$(1,\ -1)$を頂点とする正方形$D$を考える.操作を$n$回繰り返したとき,到達点が$D$の内部または辺上にある確率を$P_n$とする.$P_3$を求めよ.
(4)自然数$N$に対して$P_{3N}$を求めよ.
スポンサーリンク

「最初」とは・・・

 まだこのタグの説明は執筆されていません。