タグ「曲線」の検索結果

38ページ目:全1320問中371問~380問を表示)
北海道薬科大学 私立 北海道薬科大学 2015年 第4問
$2$つの曲線
\[ C_1:y=x(x-3)^2,\quad C_2:y=m^2x \quad (m \text{は正の実数}) \]
は異なる$3$点で交わるものとする.原点以外の交点の$x$座標を$\alpha,\ \beta (0<\alpha<\beta)$とする.

(1)$C_1$は,$x=[ア]$で極大値$[イ]$,$x=[ウ]$で極小値$[エ]$をとる.
(2)$m$の値の範囲は$[オ]<m<[カ]$であり
\[ \alpha=[キ]-m,\quad \beta=[ク]+m \]
である.
(3)$C_1$と$C_2$で囲まれた$2$つの領域の面積が等しくなるのは,$m=[ケ]$のときである.このとき,$2$つの領域の面積の和は$[コ]$となる.
東京女子大学 私立 東京女子大学 2015年 第3問
$xy$平面上の曲線$y=-x^2-(a+2)x-2a+1$を$C$とし,直線$y=-x-1$を$L$とする.このとき,以下の設問に答えよ.

(1)$C$と$L$は,定数$a$の値に関係なく,定点$\mathrm{P}$を通る.$\mathrm{P}$の座標を求めよ.
(2)$C$と$L$が$\mathrm{P}$と異なる点$\mathrm{Q}$でも交わり,かつ,$\mathrm{Q}$の$x$座標が$\mathrm{P}$の$x$座標よりも大きくなるような最大の整数$a$を求めよ.
(3)$(2)$で求めた整数$a$に対し,$C$と$L$で囲まれた図形の面積を求めよ.
東京女子大学 私立 東京女子大学 2015年 第8問
$xy$平面上の直線$y=ax$を$L$とし,曲線$y=xe^x$を$C$とする.このとき,以下の設問に答えよ.

(1)$L$と$C$が異なる$2$点で交わるとき,定数$a$の値の範囲を求めよ.
(2)$x<0$の範囲で$L$と$C$が交わるとき,$L$と$C$で囲まれた図形の面積を$a$で表せ.
東京医科大学 私立 東京医科大学 2015年 第2問
次の$[ ]$を埋めよ.

(1)$\displaystyle \int_0^1 {\left( x \sqrt{1-x^2} \right)}^3 \, dx=\frac{[ア]}{[イウ]}$である.
(2)座標平面における曲線$\displaystyle C:y=\frac{4}{3}x+\frac{2}{3} \sqrt{x} (x>0)$上に点$\mathrm{P}$をとり,原点$\mathrm{O}$と点$\mathrm{P}$とを結ぶ線分$\mathrm{OP}$を考える.線分$\mathrm{OP}$と曲線$C$により囲まれた図形の面積を$A$とし,線分$\mathrm{OP}$を一辺とする正方形の面積を$S$とする.点$\mathrm{P}$が曲線$C$上を動くとき,面積比$\displaystyle \frac{A}{S}$のとり得る最大値を$M$とすれば$\displaystyle M=\frac{[エ]}{[オカ]}$である.
東京医科大学 私立 東京医科大学 2015年 第4問
座標平面における曲線$\displaystyle C_1:y=\tan x \left( -\frac{\pi}{2}<x<\frac{\pi}{2} \right)$と曲線$\displaystyle C_2:y=\frac{12}{7} \cos x$の交点の$x$座標を$x_0$とするとき,
\[ \sin x_0=\frac{[ア]}{[イ]} \]
であり,曲線$C_1,\ C_2$と$y$軸とで囲まれた図形の面積を$S$とすれば
\[ S=\frac{[ウ]}{[エ]}+\frac{1}{2} \log \frac{[オ]}{[カキ]} \]
である.ただし,対数は自然対数とする.
九州産業大学 私立 九州産業大学 2015年 第3問
$3$次関数$f(x)$は$x=-1$と$x=-5$で極値をとり,$f(0)=14$,$f(1)=64$とする.

(1)$f(x)=[ア]x^3+[イウ]x^2+[エオ]x+[カキ]$であり,
$f^\prime(x)=[ク]x^2+[ケコ]x+[サシ]$である.
(2)$f(x)$の極大値は$[スセ]$であり,極小値は$[ソ]$である.
(3)方程式$f(x)=0$の異なる実数解の個数は$[タ]$個である.
(4)$f^\prime(x)=g(x)$とおく.曲線$y=g(x)$と$x$軸とで囲まれる図形$A$の面積は$[チツ]$である.図形$A$が直線$x=a$によって$2$つに分割され,左側と右側の部分の面積の比が$5:27$であるならば,$a$の値は$[テト]$である.
九州産業大学 私立 九州産業大学 2015年 第5問
$\displaystyle 0<x \leqq \frac{1}{2}\pi$のとき,関数$f(x)=\{1+\log (\sin x)\} \cos x$,曲線$L:y=f(x)$について考える.

(1)$f(x)=0$のとき$\sin x$の値は$[ア]$と$[イ]$である.
(2)関数$f(x)$の導関数$f^\prime(x)=[ウ]$である.
(3)不定積分$\displaystyle \int f(x) \, dx=[エ]+C$である.ここで$C$は積分定数とする.
(4)曲線$L$と$x$軸で囲まれた部分の面積は$[オ]$である.
昭和大学 私立 昭和大学 2015年 第3問
次の各問に答えよ.

(1)空間に$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 2,\ 3)$,$\mathrm{B}(2,\ -1,\ 4)$がある.次の問に答えよ.
$(1$-$1)$ $\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$の内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$を求めよ.
$(1$-$2)$ $\cos \angle \mathrm{AOB}$の値を求めよ.
$(1$-$3)$ $\triangle \mathrm{OAB}$の面積を求めよ.
(2)$\displaystyle \left( 2x^3-\frac{1}{3x} \right)^9$の展開式における$\displaystyle \frac{1}{x}$の係数を求めよ.
(3)実数全体で定義された関数$\displaystyle f(x)=\frac{x^4+5x^2+11}{x^2+2}$の最小値を求めよ.
(4)曲線$y=\sqrt{2+|4x-2x^2|}$と直線$y=m(x+3)$が相異なる$4$個の交点をもつような定数$m$の値の範囲を求めよ.
東京都市大学 私立 東京都市大学 2015年 第4問
$a$を定数とし,$0 \leqq x \leqq 3$とする.関数$f(x)$を
\[ f(x)=x-6x^{\frac{1}{3}} \]
と定める.直線$y=-x+a$が曲線$y=f(x)$に接するとき,次の問に答えよ.

(1)$a$の値を求めよ.
(2)$f(x)$の増減を調べ,極値を求めよ.
(3)曲線$y=f(x)$の概形を描け.
(4)曲線$y=f(x)$,直線$y=-x+a$および$y$軸で囲まれる部分の面積$S$を求めよ.
東京都市大学 私立 東京都市大学 2015年 第2問
次の問に答えよ.

(1)$a$を定数とする.放物線$y=ax^2$と曲線$y=\log x$がただ$1$つの共有点$\mathrm{P}$をもち,点$\mathrm{P}$で共通の接線をもつ.$a$の値と点$\mathrm{P}$の座標を求めよ.ただし,$\log$は自然対数とする.

(2)$a,\ b$を定数とし,$f(x)=ax^2+(b-a)x-b$とする.$\displaystyle \lim_{x \to 1} \frac{f(x)}{x-1}=1$,$f(2)=5$が成り立つとき,$a,\ b$の値を求めよ.

(3)定積分$\displaystyle \int_2^3 \frac{x^3-1}{x^2-1} \, dx$の値を求めよ.
スポンサーリンク

「曲線」とは・・・

 まだこのタグの説明は執筆されていません。