タグ「時間」の検索結果

3ページ目:全37問中21問~30問を表示)
成城大学 私立 成城大学 2013年 第2問
ある作業をするためにかかる時間は,作業回数に応じて変化し,$n$回目の作業時間$T_n$秒は,以下の式で示される.
\[ T_n=T_1 \cdot n^{-k} \]
ただし,$T_1$は$1$回目の作業時間,$k$は作業の種類によって異なる正の定数である.$\log_{10}3=0.4771$,$\log_{10}2=0.3010$として次の問いに答えなさい.

(1)作業$\mathrm{A}$の$1000$回目の作業時間が$150$秒,$2000$回目の作業時間が$50$秒であるときに,$k$の値を四捨五入して小数第$3$位まで求めよ.
(2)作業$\mathrm{B}$の$100$回目の作業時間が$1$回目の作業時間の半分になった.このときの$k$の値を,四捨五入して小数第$3$位まで求めよ.また,作業時間が$100$回目のさらに半分に縮まるのは,何回目の作業か.
日本福祉大学 私立 日本福祉大学 2013年 第1問
毎秒$60 \, \mathrm{m}$の速さで真上に打ち上げられた物体の$x$秒後の高さを$y \, \mathrm{m}$とすると,
\[ y=-5x^2+60x \qquad (0 \leqq x \leqq 12) \]
の関係が成り立つ.このとき,以下の問いに答えよ.

(1)この物体が達する最高地点の高さを求めよ.
(2)物体の高さが$100 \, \mathrm{m}$以下である時間の範囲を求めよ.
岩手大学 国立 岩手大学 2012年 第3問
単位時間あたり一定量の水の出るポンプを使ってプールに水を入れることを考える.以下の問いに答えよ.

(1)プールに水をいっぱい入れるのに,ポンプIを使うと2時間,ポンプIIを使うと3時間かかるとする.IとIIを同時に使うと何時間かかるか.
(2)プールに水をいっぱい入れるのに,ポンプAを使うと$a$時間,ポンプBを使うと$b$時間かかるとする.AとBを同時に使うと何時間かかるか.
(3)プールに水をいっぱい入れるのに,ポンプC$_1$,ポンプC$_2$いずれを使っても$c$時間かかるとする.C$_1$とC$_2$を同時に使うと,(2)で求めた時間と同じ時間がかかったという.$c$を$a$と$b$を用いて表せ.
(4)$c$を(3)で求めた$a,\ b$の式とするとき,不等式$\displaystyle \frac{a+b}{2} \geqq c$が成り立つことを証明せよ.また,等号が成り立つのは$a=b$の場合に限ることを示せ.
浜松医科大学 国立 浜松医科大学 2012年 第2問
$24$時間診療業務を休みなく行う病院において,$40$日間で$1$万個使用される医療材料$\mathrm{A}$について考える.$\mathrm{A}$の使用頻度は常に一定であり,$1$日の時間帯や曜日による変動は全くないものとする.さて,病院における在庫管理では,「品切れ」が起きないこと,「コスト」をできるだけ低くすること,この$2$つが肝要である.医療材料$\mathrm{A}$の保管費は,その保管期間に比例し,$1$個につき$10$日間で$1$円である.また,納入業者に$\mathrm{A}$を注文すれば,注文量の多少に関わらず,品物が届いた時点で$200$円の事務費がかかる.なお,担当者は$\mathrm{A}$の在庫量$y$の時間的推移を把握しており,品切れになる直前という最適のタイミングで,注文した量が届くものとする.われわれは,保管費と事務費の和$S$を最小にするような注文の仕方を求める.以下の問いに答えよ.

(1)$\mathrm{A}$の在庫は最初$1$万個あったとする.そして注文する量は毎回一定として,$x$で表す.このとき,時間$t$による在庫量$y$の変化を表すグラフを,横軸を時間の$t$軸とする座標平面上に図示せよ.(図示する際には,適当な$x$の値を自ら設定すること.)
以下,$1$回目の注文によって品物の届く時点以降の$y$の変化について考察する.
(2)周期的な$y$の変動に留意して,平均在庫量を求めよ.
(3)長期にわたる保管費,事務費の総額をそれぞれ見積もり,保管費と事務費の和$S$の「$1$日当たりの平均コスト」を求めよ.さらに,この$1$日当たりの平均コストを最小にするような$x$の値を求めよ.
明治大学 私立 明治大学 2012年 第1問
次の空欄$[ア]$から$[エ]$に当てはまるものを答えよ.ただし,$\log$は自然対数,$e$はその底である.

(1)$\displaystyle\lim_{n \to \infty} \left( \sqrt{n^2+n} - \sqrt{n^2-n} \right) = [ア]$

(2)$\displaystyle\lim_{x \to 0} \frac{32^x-1}{8^x-1} = [イ]$

(3)ある物質$\mathrm{P}$は時間とともに変化し,その量が減少する.時刻$t$における物質$\mathrm{P}$の量$y(t)$は,
\[ y(t) = ae^{-kt} \quad (t \geqq 0) \]
であるとする.ただし,$a>0,\ k>0$は定数であり,$a$は時刻$t=0$における物質$\mathrm{P}$の量である.物質$\mathrm{P}$の量が$\displaystyle \frac{a}{2}$となる時刻$t_0$は
\[ t_0 = [ウ]\log [エ]\]
である.
成城大学 私立 成城大学 2012年 第2問
ある自動車が速度$x \; \mathrm{km/h}$で走行しているとき,ブレーキをかけてから停止するまでの距離を$y \; \mathrm{m}$とすると,$x$と$y$の間には$y=ax^2$という関係がある.ただし,$a$は定数とし,$x=50$のとき,$y=25$であるとする.

(1)$a$の値はいくつになるか.
(2)危険を感じてから実際にブレーキをかけるまでの時間が$0.9$秒である運転者が,この車を停止させるまでの距離を$51 \; \mathrm{m}$以下にするためには,速度何$\mathrm{km/h}$以下で走行すればよいか.
上智大学 私立 上智大学 2012年 第3問
座標平面上の点$(x,\ y)$のうち,$x,\ y$がともに整数である点を格子点とよぶ.いま,格子点の集合$A$を次のように定義する.
\[ A=\{(x,\ y) \;|\; x \geqq 0,\ y \geqq 0,\ 16<x^2+y^2 \leqq 36,\ x \text{と} y \text{は整数} \} \]

(1)$A$の点は全部で$[ム]$個ある.
(2)格子点上を$1$秒間に右または上に$1$動く点$\mathrm{P}$を考える.$\mathrm{P}$は原点から出発し,$A$の点の$1$つに到達したら停止する.このとき,$\mathrm{P}$が到達できない$A$の点は全部で$[メ]$個ある.以下,$\mathrm{P}$が到達できる$A$の部分集合を$A_0$とする.
(3)$(2)$で考えた点$\mathrm{P}$が右に動く確率と上に動く確率をともに$\displaystyle \frac{1}{2}$とする.また,各格子点における$\mathrm{P}$の動きは,その点に至るまでの動き方と独立に決まるものとする.

(i) 原点からの経路の数が最も多い$A_0$の点は$\mathrm{Q}([モ],\ [ヤ])$であり,$\mathrm{P}$が$\mathrm{Q}$に到達する確率は$\displaystyle \frac{[ユ]}{[ヨ]}$である.
(ii) 原点からの経路の数が$\mathrm{Q}$の次に多い$A_0$の点は全部で$[ラ]$個あり,それらの点のいずれかで$\mathrm{P}$が停止する確率は$\displaystyle \frac{[リ]}{[ル]}$である.
(iii) $\mathrm{P}$が$A_0$の点のいずれかで停止するまでの時間の期待値は$\displaystyle \frac{[レ]}{[ロ]}$秒である.
中部大学 私立 中部大学 2012年 第2問
沖合から湾に面した海岸に向かって直線的にモーターボートを走らせている.モーターボートの速度は一定で時速$36 \; \mathrm{km}$である.モーターボートの進行方向の右前方に,湾から突き出した岬があり灯台が立っている.モーターボートの進行方向から灯台に向かって測った角度が$\theta (0^\circ<\theta<45^\circ)$である地点を$\mathrm{A}$とする.

(1)$\mathrm{A}$点から$11$分$40$秒後に角度が$90^\circ-\theta$である地点$\mathrm{B}$を通過した.$\mathrm{A}$と$\mathrm{B}$の距離を求めよ.
(2)モーターボートがさらに進んで,角度が$90^\circ$となる地点$\mathrm{C}$に到達した.$\mathrm{A}$から$\mathrm{C}$までかかった時間は$26$分$40$秒であった.灯台と$\mathrm{C}$点までの距離を求めよ.
(3)灯台と$\mathrm{A}$点の距離を求めよ.
九州工業大学 国立 九州工業大学 2011年 第3問
正の実数$a$と関数$f(x)=|x^2-a^2| \ (-2a \leqq x \leqq 2a)$がある.$y=f(x)$のグラフを$y$軸のまわりに回転させてできる形の容器に$\pi a^2 (\text{cm}^3 / \text{秒})$の割合で水を静かに注ぐ.水を注ぎ始めてから容器がいっぱいになるまでの時間を$T$(秒)とする.ただし,長さの単位はcmとする.次の問いに答えよ.

(1)$y=f(x)$のグラフの概形を描け.
(2)水面の高さが$a^2$(cm)になったとき,容器中の水の体積を$V$(cm$^3$)とする.$V$を$a$を用いて表せ.
(3)$T$を$a$を用いて表せ.
(4)水を注ぎ始めてから$t$秒後の水面の高さを$h\;$(cm)とする.$h$を$a$と$t$を用いて表せ.ただし,$0<t<T$とする.
(5)水を注ぎ始めてから$t$秒後の水面の上昇速度を$v\;$(cm/秒)とする.$v$を$a$と$t$を用いて表せ.ただし,$0<t<T$とする.
福岡大学 私立 福岡大学 2011年 第4問
曲線$y=-\cos x (0 \leqq x \leqq \pi)$を$y$軸のまわりに$1$回転させてできる形をした容器がある.ただし,単位は$\mathrm{cm}$とする.この容器に毎秒$1 \, \mathrm{cm}^3$ずつ水を入れたとき,$t$秒後の水面の半径を$r \, \mathrm{cm}$とし,水の体積を$V \, \mathrm{cm}^3$とする.水を入れ始めてからあふれるまでの時間内で考えるとき,次の問いに答えよ.

(1)水の体積$V$を$r$の式で表せ.
(2)水を入れ始めて$t$秒後の$r$の増加する速度$\displaystyle \frac{dr}{dt}$を$r$の式で表せ.
スポンサーリンク

「時間」とは・・・

 まだこのタグの説明は執筆されていません。