タグ「時点」の検索結果

2ページ目:全38問中11問~20問を表示)
佐賀大学 国立 佐賀大学 2015年 第4問
正方形の$4$個の頂点を,時計回りに順に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.頂点$\mathrm{A}$から出発して頂点上を時計回りに点$\mathrm{P}$を進めるゲームを行う.硬貨を$1$回投げるごとに,表が出たときには頂点$1$つ分だけ点$\mathrm{P}$を進め,裏が出たときには頂点$2$つ分だけ点$\mathrm{P}$を進めるものとする.ただし,点$\mathrm{P}$が頂点$\mathrm{D}$にとまった時点でゲームは終わるものとする.

硬貨を$n$回投げ終えた時点で点$\mathrm{P}$が頂点$\mathrm{A}$に到達する確率を$p_n$とするとき,次の問に答えよ.

(1)$p_2,\ p_3$を求めよ.
(2)$p_4,\ p_5$を求めよ.
(3)$p_{12}$を求めよ.
星薬科大学 私立 星薬科大学 2015年 第1問
$\mathrm{A}$,$\mathrm{B}$の$2$チームが続けて試合を行い,先に$3$勝したほうが優勝とする.各試合で$\mathrm{A}$,$\mathrm{B}$のそれぞれが勝つ確率が$\displaystyle \frac{1}{4}$,引き分ける確率が$\displaystyle \frac{1}{2}$であるとき,次の問に答えよ.

(1)$3$試合目で優勝が決まる確率は$\displaystyle \frac{[$1$]}{[$2$][$3$]}$である.
(2)$5$試合が終了した時点で,まだ優勝が決まらない確率は$\displaystyle \frac{[$4$][$5$][$6$]}{[$7$][$8$][$9$]}$である.
早稲田大学 私立 早稲田大学 2015年 第4問
棚に包装された製品が$n$個($n \geqq 4$)並んでいるが,そのうち$2$個が不良品だということがわかっている.$n$個の製品はすでに包装されているため,外見からはどれが不良品かどうかを区別することはできない.今,どの$2$個が不良品かを見つけるために,$n$個の製品のうち$1$個を取り出し,包装を解き,中身をチェックする.中身が不良品だった場合は,別に置いてあったすでに包装された良品と交換し,もとにあった場所に戻す.中身が不良品でなかった場合は,製品を包装し直した上でもとにあった場所に戻す.$1$個目の製品のチェックが終わったら,棚の別の製品も同様にチェックし,この作業を$2$個の不良品が見つかるまで繰り返し,$2$個目の不良品を交換した時点で終了する.包装された良品と交換する費用は製品$1$個につき$1000$円,製品を包装し直す費用は製品$1$個につき$100$円である.

(1)$n=4$のとき,この作業全体の費用が$2200$円になる確率は$[セ]$である.
(2)$n=4$のとき,この作業全体の費用の期待値は$\displaystyle \left( 2000+[ソ] \right)$円である.
(3)この作業全体の費用の期待値を$n$の関数で表すと$\displaystyle \left( 2000+[タ] \right)$円である.
慶應義塾大学 私立 慶應義塾大学 2015年 第2問
硬貨を$1$枚投げて表が出れば$\mathrm{A}$に$1$点,裏が出れば$\mathrm{B}$に$1$点を与えることを繰り返す.硬貨を$5$回投げ終わった時点で$\mathrm{A}$の得点は$3$点,$\mathrm{B}$の得点は$2$点であった.なお,硬貨は表裏が等しい確率で出るものとする.

(1)$6$回目以降,$\mathrm{A}$,$\mathrm{B}$のどちらかが$5$点を取るまでの各回の得点の与え方を樹形図で表すと,その場合の数は$[$11$][$12$]$通りであることがわかる.そして,$\mathrm{A}$が$\mathrm{B}$より先に$5$点を取る確率は$\displaystyle \frac{[$13$][$14$]}{[$15$][$16$]}$である.
(2)$6$回目以降の各回の得点の与え方を次のように変更する.$\mathrm{A}$は$1,\ 3,\ 5$と書かれたカードがそれぞれ$1$枚ずつ入った袋から,$\mathrm{B}$は$2,\ 4$と書かれたカードが$1$枚ずつ入った袋から,中を見ずに$1$枚取り出し,大きい数字の書かれたカードを取り出した方に$1$点を与える.このとき,各回ごとに$\mathrm{A}$が得点する確率は$\displaystyle \frac{[$17$]}{[$18$]}$であり,$\mathrm{A}$が先に$5$点を取る確率は$\displaystyle \frac{[$19$][$20$]}{[$21$][$22$]}$である.
(3)$6$回目以降について,$\mathrm{A}$の袋は$(2)$と同じとし,$\mathrm{B}$の袋には$6$と書かれたカードを$1$枚追加して,$(2)$と同様に各回の得点の与え方を定める.このとき$\mathrm{A}$が先に$5$点を取る確率は$\displaystyle \frac{[$23$][$24$]}{[$25$][$26$]}$である.
東京薬科大学 私立 東京薬科大学 2015年 第5問
$\mathrm{A}$,$\mathrm{B}$の二人がそれぞれサイコロを投げ,出た目を$1$回毎に記録する.$\mathrm{A}$はそれまでに出た目の積が$3$の倍数になった時点で,$\mathrm{B}$はそれまでに出た目の和が$3$の倍数になった時点で試行を打ち切る.$\mathrm{A}$,$\mathrm{B}$の試行がちょうど$n$回目で打ち切られる確率をそれぞれ$a_n$,$b_n$とする.

(1)$\displaystyle a_1=\frac{[さ]}{[し]},\ b_1=\frac{[す]}{[せ]}$である.

(2)$\displaystyle a_n=\frac{[そ]}{[た]} \left( \frac{[ち]}{[つ]} \right)^{n-1}$である.
大阪市立大学 公立 大阪市立大学 2015年 第4問
$1$枚の硬貨を何回も投げ,表が$2$回続けて出たら終了する試行を行う.ちょうど$n$回投げた時点で終了する確率を$P_n$とするとき,次の問いに答えよ.

(1)$P_2$を求めよ.
(2)$P_3$を求めよ.
(3)$P_4$を求めよ.
(4)$\displaystyle P_5<\frac{1}{2}$であることを示せ.
岡山大学 国立 岡山大学 2014年 第4問
$\mathrm{A}$と$\mathrm{B}$が続けて試合を行い,先に$3$勝した方が優勝するというゲームを考える.$1$試合ごとに$\mathrm{A}$が勝つ確率を$p$,$\mathrm{B}$が勝つ確率を$q$,引き分ける確率を$1-p-q$とする.

(1)$3$試合目で優勝が決まる確率を求めよ.
(2)$5$試合目で優勝が決まる確率を求めよ.
(3)$\displaystyle p=q=\frac{1}{3}$としたとき,$5$試合目が終了した時点でまだ優勝が決まらない確率を求めよ.
(4)$\displaystyle p=q=\frac{1}{2}$としたとき,優勝が決まるまでに行われる試合数の期待値を求めよ.
金沢大学 国立 金沢大学 2014年 第2問
$1$から$4$までの番号を書いた玉が$2$個ずつ,合計$8$個の玉が入った袋があり,この袋から玉を$1$個取り出すという操作を続けて行う.ただし,取り出した玉は袋に戻さず,また,すでに取り出した玉と同じ番号の玉が出てきた時点で一連の操作を終了するものとする.玉をちょうど$n$個取り出した時点で操作が終わる確率を$P(n)$とおく.次の問いに答えよ.

(1)$P(2),\ P(3)$を求めよ.
(2)$6$以上の$k$に対し,$P(k)=0$が成り立つことを示せ.
(3)一連の操作が終了するまでに取り出された玉の個数の期待値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2014年 第2問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

数直線上の座標$1,\ 2,\ 3$で表される位置に置かれた点に対する次の操作$\mathrm{T}$を考える.
\begin{screen}
操作$\mathrm{T}$

\mon[$(\mathrm{a})$] 点が$1$または$2$の位置に置かれている場合は確率$\displaystyle \frac{3}{4}$でそのままにしておき,確率$\displaystyle \frac{1}{4}$で正の方向へ$1$だけ動かす.
\mon[$(\mathrm{b})$] 点が$3$の位置に置かれている場合は確率$\displaystyle \frac{3}{4}$でそのままにしておき,確率$\displaystyle \frac{1}{4}$で負の方向へ$1$だけ動かす.

\end{screen}
以下,$n$を自然数とする.


(1)$1$の位置に置かれている点$\mathrm{A}$に対し,操作$\mathrm{T}$を$n$回繰り返し行った時点で,点$\mathrm{A}$が$1$の位置に置かれている確率を$p_n$,$2$の位置に置かれている確率を$q_n$とすると,$p_n=[あ]$,$q_n=[い]$である.
(2)$2$の位置に置かれている点$\mathrm{B}$に対し,操作$\mathrm{T}$を$n$回繰り返し行った時点で,点$\mathrm{B}$が$2$の位置に置かれている確率を$q_n^\prime$とすると,$q_n^\prime=[う]$である.
(3)$2$点$\mathrm{C}$,$\mathrm{D}$がともに$1$の位置に置かれているとする.はじめに$\mathrm{K}$君が点$\mathrm{C}$に対し操作$\mathrm{T}$を繰り返し行うとし,点$\mathrm{C}$が$1$の位置を離れた次の回からは$\mathrm{O}$君が加わって,$\mathrm{K}$君が点$\mathrm{C}$に対し操作$\mathrm{T}$を繰り返し行うのと同時に,$\mathrm{K}$君とは独立に,$\mathrm{O}$君が点$\mathrm{D}$に対し操作$\mathrm{T}$を繰り返し行うとする.

$(3-1)$ $\mathrm{K}$君が点$\mathrm{C}$に対し操作$\mathrm{T}$を$n$回繰り返し行った時点で,$2$点$\mathrm{C}$,$\mathrm{D}$がともに$2$の位置に置かれている確率を$r_n$とすると$r_1=0$,$r_2=[え]$であり,一般に$n \geqq 2$に対して$r_n=[お]$である.
$(3-2)$ $\mathrm{K}$君が点$\mathrm{C}$に対し操作$\mathrm{T}$を$n$回繰り返し行った時点で,$2$点$\mathrm{C}$,$\mathrm{D}$がどちらも$2$の位置に置かれていない確率を$s_n$とすると$s_1=[か]$である.また一般に$n \geqq 2$に対して$s_n-r_n=[き]$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第3問
正六角形$\mathrm{ABCDEF}$の頂点$\mathrm{D}$と正六角形の外部の点$\mathrm{G}$を線分で結んだ下のような図形がある.動点$\mathrm{P}$はこの図形の線分上を動き,点から点へ移動する.動点$\mathrm{P}$の隣接する点への移動には$1$秒間を要する.また,隣接する点が複数あるときは,等しい確率でどれか$1$つの点に移動するものとする.
(図は省略)

(1)動点$\mathrm{P}$が$\mathrm{A}$から出発して$4$秒後に$\mathrm{G}$にいる確率は$\displaystyle \frac{[$53$]}{[$54$][$55$]}$である.

(2)動点$\mathrm{P}$が$\mathrm{A}$から出発して$5$秒後に$\mathrm{D}$にいる確率は$\displaystyle \frac{[$56$][$57$]}{[$58$][$59$]}$である.

(3)動点$\mathrm{P}$が$\mathrm{A}$から出発して$\mathrm{D}$に到達した時点で移動を終了するとき,$2n+1$秒以内に移動を終了する確率は$\displaystyle \frac{{[$60$]}^n-{[$61$]}^n}{{[$62$]}^n}$である.ただし,$n$は自然数とする.
スポンサーリンク

「時点」とは・・・

 まだこのタグの説明は執筆されていません。