タグ「方程式」の検索結果

59ページ目:全1641問中581問~590問を表示)
愛媛大学 国立 愛媛大学 2014年 第2問
$n$は自然数,$m$は整数,$k,\ \alpha,\ \beta$は実数とする.

(1)$\alpha \geqq 1$,$\beta \geqq 1$のとき,$\alpha\beta \geqq \alpha+\beta-1$が成り立つことを示せ.
(2)$x$に関する$2$次方程式$x^2-mx+k=0$の$2$つの解を$p,\ q$とする.$p$が整数ならば,$q$と$k$も整数であることを示せ.
(3)$x$に関する$2$次方程式$x^2-n^2x+n=0$は,整数の解をもたないことを示せ.
(4)$x$に関する$2$次方程式$x^2-(n-2)^2x+n=0$が整数の解をもつとき,$n$の値とその解をすべて求めよ.
京都教育大学 国立 京都教育大学 2014年 第6問
曲線$y=\log 2x$上の点$\displaystyle \mathrm{P}(t,\ \log 2t) \left( 0<t<\frac{1}{2} \right)$における接線$\ell$が$x$軸と交わる点を$\mathrm{A}$,$y$軸と交わる点を$\mathrm{B}$,原点を$\mathrm{O}$とおく.このとき,次の問に答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)三角形$\mathrm{OAB}$の面積$S$を求めよ.
(3)$S$の最大値とそのときの点$\mathrm{P}$の座標を求めよ.
福島大学 国立 福島大学 2014年 第1問
次の問いに答えなさい.

(1)$a,\ b$を正の実数とするとき,不等式
\[ a^3+b^3 \geqq a^2b+ab^2 \]
が成り立つことを示しなさい.
(2)$2$次方程式
\[ 2x^2-kx+1=0 \]
が,$0<x<1$および$1<x<2$の範囲に解を$1$つずつもつとき,定数$k$の値の範囲を求めなさい.
(3)正の実数$x,\ y,\ z$が
\[ \frac{yz}{x}=\frac{zx}{4y}=\frac{xy}{9z} \]
を満たすとする.このとき,式
\[ \frac{x+y+z}{\sqrt{x^2+y^2+z^2}} \]
の値を求めなさい.
福島大学 国立 福島大学 2014年 第1問
次の問いに答えなさい.

(1)定積分
\[ \int_0^{2\pi} \sin \frac{7x}{3} \cos \frac{2x}{3} \, dx \]
を求めなさい.
(2)次の無限級数の収束,発散について調べ,収束する場合はその和を求めなさい.
\[ \frac{1}{2^2-1}+\frac{1}{4^2-1}+\frac{1}{6^2-1}+\cdots +\frac{1}{(2n)^2-1}+\cdots \]
(3)$a$を定数とする.$x$についての方程式
\[ 1-4 \cos^2 x=a \quad (0 \leqq x<\pi) \]
の異なる解の個数を調べなさい.
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

(1)$1$から$13$までの整数が$1$つずつ書かれた$13$枚のカードの中から$3$枚を選ぶとき,偶数が書かれたカードが$2$枚以上含まれる選び方は$[あ]$通りであり,$11$以上の数が書かれたカードが少なくとも$1$枚含まれる選び方は$[い]$通りである.
(2)$\alpha=2+\sqrt{5}$とするとき,$\alpha$を解とし,整数を係数とする$2$次方程式$x^2+a_1x+b_1=0$を求めると$a_1=[う]$,$b_1=[え]$である.また自然数$n$に対して,$\alpha^n$を解とし,整数を係数とする$2$次方程式を$x^2+a_nx+b_n=0$とすると,$b_n=[お]$であり,$a_n^2+a_{2n}=[か]$である.
(3)実数$m$に対して
\[ A(m)=\int_0^1 x(e^x-m)^2 \, dx \]
とおくと,関数$A(m)$は$m=[き]$のとき最小値$[く]$をとる.
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
次の問いに答えよ.

(1)実数$x$の関数$f(x)=x^3-ax^2+bx+4b-2$は,$\displaystyle \lim_{x \to 4} \frac{f(x)}{x-2}=-5$を満たす.ただし,$a,\ b$は実数とする.このとき,

(i) $b$を$a$の式で表すと,$b=[$1$]a-[$2$]$である.
(ii) $x$の値が$3$から$6$まで変化するときの関数$f(x)$の平均変化率が,関数$f(x)$の$x=2+\sqrt{7}$における微分係数に等しいとき,$a=[$3$]$,$b=[$4$]$である.

(2)実数$a$についての方程式
\[ A=|2a+\displaystyle\frac{4|{3}k}+|a-\displaystyle\frac{8|{9}k} \]
において,$\displaystyle a=\frac{1}{4}$のとき$\displaystyle A=\frac{21}{4}$である.ただし,$k$は正の実数の定数とする.このとき,

(i) $\displaystyle k=\frac{[$5$]}{[$6$]}$である.
(ii) $A$の最小値は$\displaystyle \frac{[$7$]}{[$8$]}$であり,このときの$a$の値は$\displaystyle \frac{[$9$][$10$]}{[$11$]}$である.

(3)$n$を自然数とする.数列$\{a_n\}$は,$a_1=5$,$\displaystyle a_{n+1}=\frac{25}{{a_n}^2}$を満たす.このとき,

(i) $a_3=[$12$][$13$]$,$\displaystyle a_4=\frac{[$14$]}{[$15$][$16$]}$である.
(ii) $b_n=\log_5 a_n$とおくとき,数列$\{b_n\}$の一般項を$n$の式で表すと,
\[ b_n=\frac{\left( [$17$][$18$] \right)^{n-1}}{[$19$]}+\frac{[$20$]}{[$21$]} \]
である.

(4)円に内接する四角形$\mathrm{ABCD}$において,$\angle \mathrm{BCD}=60^\circ$,$\mathrm{CD}=2 \sqrt{6}$,$\angle \mathrm{DAB}>\angle \mathrm{CDA}$である.また$2$直線$\mathrm{BA}$,$\mathrm{CD}$の交点を$\mathrm{E}$,$2$直線$\mathrm{DA}$,$\mathrm{CB}$の交点を$\mathrm{F}$とすると,$\angle \mathrm{AFB}=45^\circ$,$\mathrm{DE}=3 \sqrt{2}-\sqrt{6}$である.このとき,

(i) $\angle \mathrm{AED}$の大きさは${[$22$][$23$]}^\circ$であり,辺$\mathrm{EB}$の長さは$[$24$]$である.

(ii) 三角形$\mathrm{AED}$の面積は,三角形$\mathrm{CEB}$の面積の$\displaystyle \frac{[$25$]-\sqrt{[$26$]}}{[$27$]}$倍である.

(5)$xy$平面上に放物線$C:2x^2+(k-5)x-(k+1)y+6k-14=0$と直線$\displaystyle \ell:y=\frac{1}{2}x$がある.$k$は$k \neq -1$を満たす実数とする.放物線$C$は$-1$を除くすべての実数$k$に対して$2$定点$\mathrm{A}(x_\mathrm{A},\ y_\mathrm{A})$,$\mathrm{B}(x_\mathrm{B},\ y_\mathrm{B})$を通る.ただし,$x_\mathrm{A}<x_\mathrm{B}$とする.このとき,

(i) $2$点$\mathrm{A}$,$\mathrm{B}$の座標は
\[ (x_\mathrm{A},\ y_\mathrm{A})=\left( [$28$][$29$],\ [$30$] \right),\quad (x_\mathrm{B},\ y_\mathrm{B})=\left( [$31$],\ [$32$][$33$] \right) \]
である.
(ii) 直線$\ell$上に点$\mathrm{P}$をおき,$2$点$\mathrm{A}$,$\mathrm{B}$をそれぞれ点$\mathrm{P}$と線分で結ぶとき,距離の和$\mathrm{AP}+\mathrm{BP}$を最小にする点$\mathrm{P}$の座標は$\displaystyle \left( \frac{[$34$][$35$]}{[$36$]},\ \frac{[$37$][$38$]}{[$39$]} \right)$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第3問
以下の文章の空欄に適切な式を入れて文章を完成させなさい.また$(3) \ (ⅱ)$に答えなさい.

放物線$\displaystyle y=\frac{1}{2}x^2+\frac{1}{2}$を$C$で表す.$C$上にない点$\displaystyle \mathrm{P}(X,\ Y) \left( \text{ただし} Y<\frac{1}{2}X^2+\frac{1}{2} \right)$から$C$に引いた$2$本の接線のうち,接点の$x$座標が小さい方を$\ell_1$とし,大きい方を$\ell_2$とする.また$\ell_1$,$\ell_2$と$C$との接点をそれぞれ$\mathrm{Q}_1$,$\mathrm{Q}_2$とする.


(1)接線$\ell_1,\ \ell_2$の傾き$m_1,\ m_2$はそれぞれ$m_1=[あ]$,$m_2=[い]$である.
(2)$\mathrm{Q}_1$,$\mathrm{Q}_2$における$C$の法線をそれぞれ$L_1$,$L_2$とするとき,$L_1$と$L_2$の交点$\mathrm{R}$の座標を$X,\ Y$を用いた式で表すと
\[ \left( [う],\ [え] \right) \]
である.
(3)$\angle \mathrm{Q}_1 \mathrm{PQ}_2$が一定値$\alpha$(ただし$0<\alpha<\pi$)となるような点$\mathrm{P}(X,\ Y)$の軌跡を$S(\alpha)$で表す.

(i) $\displaystyle S \left( \frac{\pi}{2} \right)$の方程式は$[お]$である.

(ii) $\displaystyle \alpha \neq \frac{\pi}{2}$のときに$S(\alpha)$を求めなさい.

(4)点$\mathrm{P}(X,\ Y)$が$\displaystyle S \left( \frac{\pi}{2} \right)$の上を動くとき,点$\mathrm{R}$が描く軌跡の方程式は$[か]$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
次の問いに答えよ.

(1)$x,\ y,\ z$は実数で$xyz \neq 0$とする.もし
\[ 2^x=3^y=[$1$][$2$]^z \]
ならば
\[ \frac{3}{x}+\frac{2}{y}=\frac{1}{z} \]
である.
(2)関数$f(x)=x^2-2$に対して,$g(x)=f(f(x))$とおく.このとき,方程式$g(x)=x$の解は
\[ [$3$][$4$],\quad [$5$][$6$],\quad \frac{[$7$][$8$] \pm \sqrt{[$9$][$10$]}}{[$11$][$12$]} \]
である.ただし,最初の数は$2$番目の数より小とする.
(3)直線$y=-3x$上の点$\mathrm{P}$と,曲線$xy=2 (x>0)$上の点$\mathrm{Q}$の間の距離の最小値は
\[ \frac{[$13$] \sqrt{[$14$][$15$]}}{[$16$][$17$]} \]
である.
慶應義塾大学 私立 慶應義塾大学 2014年 第3問
$a_1=0$,$a_{n+1}=\log (a_n+e) (n=1,\ 2,\ 3,\ \cdots)$で定まる数列$\{a_n\}$の収束について調べたい.以下の問いに答えなさい.

(1)方程式$x=\log (x+e)$は$x>0$の範囲でただ$1$つの実数解$\beta$をもつことを証明しなさい.
(2)すべての自然数$n$について$0 \leqq a_n<\beta$が成り立つことを証明しなさい.
(3)$0<a<b$のとき$\displaystyle \log b-\log a<\frac{b-a}{a}$が成り立つことを証明しなさい.
(4)すべての自然数$n$について$\displaystyle \beta-a_{n+1}<\frac{1}{e}(\beta-a_n)$が成り立つことを証明し,これを用いて$\displaystyle \lim_{n \to \infty}a_n=\beta$を示しなさい.
慶應義塾大学 私立 慶應義塾大学 2014年 第2問
次の$[ ]$にあてはまる最も適当な数または式などを解答欄に記入しなさい.

(1)座標平面上に曲線$C_1:y=x^2-1$がある.$x$軸に関して$C_1$に対称な曲線を$C_2$とすると,$C_2$を表す方程式は$[ケ]$である.
$0 \leqq a \leqq 1$とするとき,$-a \leqq x \leqq a$において,曲線$C_2$と直線$y=a^2-1$,および$2$直線$x=-a$,$x=a$で囲まれた図形の面積$S(a)$は,
\[ S(a)=[コ] \]
となる.$S(a)$は,$a=[サ]$のとき最大値$[シ]$をとる.
(2)関数$f(x)=8^x-6 \cdot 4^x+5 \cdot 2^x$を考える.$f(x)=-12$を満たす実数$x$をすべて求めると,$x=[ス]$となる.また,方程式$f(x)=k$が$3$つの実数解をもつような定数$k$の値の範囲は,$[セ]<k<[ソ]$である.
スポンサーリンク

「方程式」とは・・・

 まだこのタグの説明は執筆されていません。