タグ「方程式」の検索結果

45ページ目:全1641問中441問~450問を表示)
崇城大学 私立 崇城大学 2015年 第1問
次の各問に答えよ.

(1)不等式$|x^2-x-6| \geqq x+2$を解け.
(2)方程式$2 \log_3 x-2 \log_x 3+3=0$を解け.
(3)$\mathrm{AB}=1$,$\mathrm{AD}=2$,$4 \mathrm{AC}=3 \mathrm{BD}$の平行四辺形$\mathrm{ABCD}$がある.対角線$\mathrm{AC}$,$\mathrm{BD}$の長さを求めよ.
近畿大学 私立 近畿大学 2015年 第1問
次の問いに答えよ.

(1)$\displaystyle x=\frac{1+\sqrt{3}i}{2}$のとき


$x^3-2x^2+4x+2=[ア]+\sqrt{[イ]}i$

$\displaystyle x^4-2x^3+3x^2-7x=\frac{[ウ][エ]-[オ] \sqrt{[カ]}i}{[キ]}$


である.ただし,$i$は虚数単位とする.
(2)$2$次方程式$x^2-4x-3=0$の正の解の整数部分を$a$,小数部分を$b$とすると


$a=[ク]$

$b=\sqrt{[ケ]}-[コ]$

$\displaystyle \frac{a-b}{a+b}=\frac{[サ] \sqrt{[シ]}-[ス][セ]}{[ソ]}$


である.
(3)不等式$\log_9 (2-x)^2-\log_{\frac{1}{3}} (x-1)>\log_3 (3-2x)$の解は
\[ \frac{[タ]-\sqrt{[チ]}}{[ツ]}<x<\frac{[テ]}{[ト]} \]
である.
近畿大学 私立 近畿大学 2015年 第3問
座標平面において,中心が原点$\mathrm{O}$で点$\mathrm{P}(1,\ 0)$を通る円$C_1$と,中心が点$\mathrm{Q}(s,\ t)$で点$\mathrm{P}$を通る円$C_2$がある.ただし$t>0$とする.$C_1$と$C_2$の$\mathrm{P}$ではない交点を$\mathrm{R}$とし,$C_1$の境界を含む内部と$C_2$の境界を含む内部の共通部分を$D$とする.

(1)直線$\mathrm{PR}$の方程式は$s(x-[ア])+ty=0$である.$s=0$のとき,点$\mathrm{R}$は$t$の値によらず同じ位置にあって,その座標は$([イ][ウ],\ [エ])$である.

(2)$s=\sqrt{3} \, t$のとき,点$\mathrm{R}$は$s$と$t$の値によらず同じ位置にあって,その座標は$\displaystyle \left( \frac{[オ]}{[カ]},\ \frac{\sqrt{[キ]}}{[ク]} \right)$である.四角形$\mathrm{OPQR}$は円に内接するとする.このとき,点$\mathrm{Q}$の座標は$\displaystyle \left( [ケ],\ \frac{\sqrt{[コ]}}{[サ]} \right)$である.また,領域$D$の面積は$\displaystyle \frac{[シ]}{[ス][セ]} \pi-\frac{\sqrt{[ソ]}}{[タ]}$である.

(3)点$\mathrm{Q}$は$s+t=2$を満たしながら動くとする.線分$\mathrm{QR}$の長さが最小となるような点$\mathrm{R}$の座標は$\displaystyle \left( \frac{[チ]}{[ツ]},\ \frac{[テ]}{[ト]} \right)$であり,このときの領域$D$の面積は$\displaystyle \frac{\pi}{4}-\frac{\alpha}{[ナ]}-\frac{[ニ]}{[ヌ]}$となる.ただし,$\displaystyle \sin \alpha=\frac{4}{5} \left( 0<\alpha<\frac{\pi}{2} \right)$である.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2015年 第1問
以下の$(1)$~$(4)$の$[$1$]$~$[$4$]$に適切な値を答えなさい.ただし,$e$は自然対数の底とする.

(1)$A=e^2$とするとき,
\[ 8 \left( 1+\cos^3 \frac{\pi}{18} \right) \log_A e-\frac{3}{2} \left( 1+\cos \frac{\pi}{18} \right) \log_e A=[$1$] \]
である.
(2)$b$を正の定数,$x$を正の実数とする.方程式$\log_e x=bx$が異なる$2$つの実数解をもつのは$0<b<[$2$]$のときである.
(3)数列$\{c_n\} (n=1,\ 2,\ 3,\ \cdots)$を,初項$1$,公差$2$の等差数列とする.数列$\{c_n\}$の初項から第$n$項までの和$S_n$に対して$T_n=\log_e S_n$,$U_n=e^{T_n}$と定義する.数列$\{U_n\}$の初項から第$24$項までの和の値は$[$3$]$となる.

(4)定積分$\displaystyle \int_0^D \frac{2e^x}{2e^x+3} \, dx$の値は$[$4$]$である.ただし,$D=\log_e 3$とする.
昭和薬科大学 私立 昭和薬科大学 2015年 第1問
次の問いに答えよ.

(1)${10}^{a+1}=45,\ {10}^{b+2}=75$のとき,$\log_{10}5$を$a,\ b$を用いて表すと,$\displaystyle \log_{10}5=\frac{-a+[ア]b+[イ]}{[ウ]}$である.
(2)次の連立不等式を満たす整数$x$をすべて加えると$[エ][オ]$である.
\[ \left\{ \begin{array}{l}
x^2-12x+10<0 \\
x^2-6x-1>0 \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
(3)区別のつかない$8$個の球を$4$人で分配する方法は$[カ][キ][ク]$通りである.ただし,$1$個も配分されない人がいる場合も含めて考えることにする.
(4)$\displaystyle \tan (\alpha-\beta)=2,\ \alpha+\beta=\frac{\pi}{2},\ 0<\alpha<\frac{\pi}{2}$のとき,$\tan \alpha=[ケ]+\sqrt{[コ]}$,$\tan \beta=[サ][シ]+\sqrt{[ス]}$である.
(5)点$\mathrm{A}(6,\ 0,\ 5)$,$\mathrm{B}(0,\ -7,\ 3)$,$\mathrm{C}(0,\ 0,\ 1)$に対して,直線$\mathrm{AB}$と$xy$平面の交点を$\mathrm{P}$,直線$\mathrm{AC}$と$xy$平面の交点を$\mathrm{Q}$とする.直線$\mathrm{PQ}$の方程式は
\[ y=\frac{[セ]}{[ソ]}x+\frac{[タ]}{[チ]},\quad z=0 \]
である.
(6)$\displaystyle \sum_{k=1}^n k \cdot 3^k=\frac{[ツ]}{[テ]} \{([ト]n-1)3^n+1 \}$である.
崇城大学 私立 崇城大学 2015年 第2問
関数$f(x)=3x^2+5$のグラフ上の点$(-2,\ f(-2))$における接線を$\ell_1$とし,直線$x=k$(ただし,$k \neq -2$)を$\ell_2$とするとき,次の各問に答えよ.

(1)接線$\ell_1$の方程式を求めよ.
(2)関数$f(x)$のグラフと接線$\ell_1$,直線$\ell_2$で囲まれた図形の面積が$\displaystyle \frac{125}{8}$となるとき,定数$k$の値を求めよ.
崇城大学 私立 崇城大学 2015年 第1問
次の各問に答えよ.

(1)$2$次方程式$(a-1)x^2+2(a+1)x+a+2=0$が重解をもつとき,定数$a$の値とその重解を求めよ.
(2)$0 \leqq \theta \leqq \pi$で,$\displaystyle \sin \theta \cos \theta=-\frac{1}{4}$となる$\theta$の値をすべて求めよ.
(3)$x,\ y$が$x^2+y^2=4$を満たすとき,$2x+y^2$の最大値と最小値,およびそのときの$x,\ y$の値を求めよ.
崇城大学 私立 崇城大学 2015年 第2問
$k$を定数とする.関数$f(x)$は,条件$f^\prime(x)=12x^2-2x-2$,$f(0)=k$を満たしている.次の各問に答えよ.

(1)$f(x)$の極値を$k$を用いて表せ.
(2)方程式$f(x)=0$の異なる実数解の個数を,$k$の値によって分類せよ.
崇城大学 私立 崇城大学 2015年 第2問
放物線$y=-x^2+4$上に$x$座標が正である点$\mathrm{P}$をとる.点$\mathrm{P}$におけるこの放物線の接線と点$\mathrm{P}$で直交する直線を$\ell$とするとき,次の各問に答えよ.

(1)この放物線上の点$\displaystyle \left( -\frac{3}{2},\ \frac{7}{4} \right)$を通るような直線$\ell$の方程式を求めよ.
(2)この放物線と$x$軸で囲まれた図形は,$(1)$で求めた直線で$3$つの部分に分けられる.点$(0,\ 4)$,$(0,\ 3)$,$(0,\ 2)$を含む部分の面積をそれぞれ$S_1$,$S_2$,$S_3$とするとき,$S_1:S_2:S_3$を求めよ.
京都薬科大学 私立 京都薬科大学 2015年 第2問
次の$[ ]$にあてはまる数を記入せよ.

座標平面上に$4$点$\mathrm{A}(6,\ 6)$,$\mathrm{B}(-3,\ 3)$,$\mathrm{C}(2,\ -2)$,$\mathrm{D}(-6,\ -6)$がある.

(1)$\triangle \mathrm{ABC}$の外心の座標は$([ア],\ [イ])$であり,外接円の半径は$[ウ]$である.この円を$C$とする.
(2)円$C$上を動く点$\mathrm{P}$と点$\mathrm{D}$に対して,線分$\mathrm{DP}$を$1:2$に内分する点の軌跡は円になる.この円の中心の座標は$([エ],\ [オ])$であり,半径は$[カ]$である.
(3)点$\mathrm{A}$での円$C$の接線を$\ell_1$とする.接線$\ell_1$の方程式は$y=[キ]x+[ク]$であり,$\ell_1$と$x$軸との交点$\mathrm{E}$の座標は$([ケ],\ 0)$である.
(4)点$\mathrm{E}$を通り,円$C$に接する直線は$2$本ある.$\ell_1$と異なる接線を$\ell_2$とし,$\ell_2$は点$\mathrm{F}$で円$C$に接するとする.点$\mathrm{F}$の座標は$([コ],\ [サ])$であり,$\ell_2$の方程式は$y=[シ]x+[ス]$である.
スポンサーリンク

「方程式」とは・・・

 まだこのタグの説明は執筆されていません。