タグ「方程式」の検索結果

36ページ目:全1641問中351問~360問を表示)
早稲田大学 私立 早稲田大学 2015年 第1問
$a$を定数とする.$x$についての方程式
\[ |(x-4)(x-2)|=ax-5a+\frac{1}{2} \]
が相異なる$4$つの実数解をもつとき,$a$の範囲は,$\displaystyle [ア]+\sqrt{[イ]}<a<\frac{1}{[ウ]}$である.
早稲田大学 私立 早稲田大学 2015年 第3問
$a,\ b$を実数とし,
\[ f(x)=x^2+ax+1,\quad g(x)=-x^2-bx+1 \]
とおく.次の問に答えよ.

(1)方程式$f(x)=0$と$g(x)=0$が共通の解を持つための$a,\ b$の条件を求めよ.
(2)$a \geqq 0,\ b \geqq 0$の範囲で,$(1)$で求めた条件をみたしながら$a,\ b$を動かす.$f(x)=0$と$g(x)=0$の共通解を$\alpha$とし,$y=f(x)$のグラフ上の点$(\alpha,\ 0)$における接線を$\ell$とする.このとき,$y=g(x)$のグラフと$\ell$で囲まれる部分の面積$S$の最小値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
次の$[ ]$にあてはまる最も適当な数または式などを解答欄に記入しなさい.

(1)$2$次方程式$x^2+kx+k+8=0$が異なる$2$つの実数解$\alpha$,$\beta$をもつとする.このとき,定数$k$の値の範囲は$k<[ア]$または$k>[イ]$である.さらに,このとき$\alpha^2+\beta^2=19$となるような定数$k$の値は$k=[ウ]$である.
(2)$xyz$空間の$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(-1,\ 0,\ 0)$,$\mathrm{C}(0,\ \sqrt{3},\ 0)$を$3$頂点とする三角形を底面にもち,$z \geqq 0$の部分にある正四面体$\mathrm{ABCD}$を考える.頂点$\mathrm{D}$の座標は$[エ]$である.また$4$頂点において正四面体$\mathrm{ABCD}$に外接する球の中心$\mathrm{E}$の座標は$[オ]$であり,$\overrightarrow{\mathrm{EA}}$と$\overrightarrow{\mathrm{EB}}$のなす角を$\theta ({0}^\circ \leqq \theta \leqq {180}^\circ)$とすると$\cos \theta=[カ]$である.
(3)$n$を自然数とする.白玉$5$個と赤玉$n$個が入っている袋から同時に玉を$2$個取り出すとき,取り出した玉の色が異なる確率を$p_n$とする.このとき$p_n=[キ]$である.また$\displaystyle p_n \leqq \frac{1}{5}$となる最小の自然数$n$は$n=[ク]$である.
早稲田大学 私立 早稲田大学 2015年 第5問
$a>0$とする.$xy$平面上に点$\mathrm{A}(-\sqrt{2}a,\ 0)$,$\mathrm{B}(\sqrt{2}a,\ 0)$を固定する.動点$\mathrm{P}(x,\ y)$は条件$\mathrm{AP}+\mathrm{BP}=4a$をみたすものとする.次の問に答えよ.

(1)点$\mathrm{P}$の軌跡として得られる曲線の方程式を求めよ.ただし,答のみでよい.
(2)$(1)$の曲線の$-\sqrt{2}a \leqq x \leqq \sqrt{2}a$の部分と,直線$x=-\sqrt{2}a$,直線$x=\sqrt{2}a$で囲まれる図形を$x$軸のまわりに$1$回転してできる立体を考える.この立体の体積$V$を求めよ.
(3)$(2)$の立体の表面積$S$を求めよ.ここで,$y=f(x)$のグラフの$p \leqq x \leqq q$の部分を$x$軸のまわりに$1$回転してできる曲面の面積は
\[ 2\pi \int_p^q \sqrt{\{f(x)\}^2+\{f(x)f^\prime(x)\}^2} \, dx \]
として計算してよい.
早稲田大学 私立 早稲田大学 2015年 第3問
放物線$\displaystyle p:y=\frac{1}{4}x^2$がある.点$\mathrm{A}(1,\ 1)$から$y$軸に平行な直線を引き,放物線$p$との交点を点$\mathrm{B}$とする.点$\mathrm{B}$を通り,放物線$p$に接する直線を$\ell_1$とする.

(1)点$\mathrm{B}$を通り,直線$\ell_1$に垂直な直線を$\ell_2$とすると,直線$\ell_2$の方程式は
\[ y=[ク] \]
で表される.
(2)直線$\ell_2$に関して,点$\mathrm{A}$に対称な点$\mathrm{C}$の座標は,
\[ (x,\ y)=([ケ],\ [コ]) \]
である.
(3)点$\mathrm{B}$と点$\mathrm{C}$を通る直線を$\ell_3$とすると,直線$\ell_3$と$y$軸との交点の座標は
\[ (x,\ y)=(0,\ [サ]) \]
となる.
(4)点$\mathrm{B}$とは異なる直線$\ell_3$と放物線$p$との交点を点$\mathrm{D}$とする.点$\mathrm{B}$と点$\mathrm{D}$を通る直線と放物線$p$で囲まれた部分の面積は$[シ]$となる.
(5)点$\mathrm{D}$を通る放物線$p$の接線を$\ell_4$とする.点$\mathrm{D}$を通り,接線$\ell_4$に垂直な直線を$\ell_5$とする.直線$\ell_5$に関して,点$\mathrm{C}$に対称な点を点$\mathrm{E}$とする.点$\mathrm{D}$と点$\mathrm{E}$を通る直線の方程式は
\[ x=[ス] \]
で表される.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
次の問いに答えよ.

(1)次の問いに答えよ.

(i) $f(x,\ y)=2x^2+11xy+12y^2-5y-2$を因数分解すると,
\[ \left(x+[$1$]y+[$2$] \right) \left([$3$]x+[$4$]y-[$5$] \right) \]
である.
(ii) $f(x,\ y)=56$を満たす自然数$x,\ y$の値は,$x=[$6$]$,$y=[$7$]$である.

(2)$xy$平面上の$2$直線$y=x+4 \sin \theta+1$,$y=-x+4 \cos \theta-3$の交点を$\mathrm{P}$とおく.ただし,$\theta$は実数とする.

(i) $\displaystyle \theta=\frac{\pi}{12}$のとき,点$\mathrm{P}$の座標は$\displaystyle \left( \sqrt{[$8$]}-[$9$],\ \sqrt{[$10$]}-[$11$] \right)$である.
(ii) $\theta$が実数全体を動くとき,点$\mathrm{P}$の軌跡は
\[ x^2+y^2+[$12$]x+[$13$]y-[$14$]=0 \]
である.

(3)$2$次関数$f(x)$は,すべての実数$x$について
\[ \int_0^x f(t) \, dt=xf(x)-\frac{4}{3}x^3+ax^2 \]
を満たす.ただし,$a$は実数である.また,$f(0)=a^2-a-6$である.このとき,

(i) $f(x)=[$15$]x^2-[$16$]ax+\left( a+[$17$] \right) \left( a-[$18$] \right)$である.
(ii) 方程式$f(x)=0$が少なくとも$1$つの正の実数解をもつような$a$の値の範囲は
\[ [$19$][$20$]<a \leqq [$21$]+\sqrt{[$22$][$23$]} \]
である.

(4)$\{a_n\}$は,数字の$1$と$2$だけで作ることのできる自然数を小さい順に並べた数列である.
\[ \{a_n\} : \ 1,\ 2,\ 11,\ 12,\ 21,\ 22,\ 111,\ \cdots \]
このとき,

(i) $a_{10}=[$24$][$25$][$26$]$,$a_{15}=\kakkofour{$27$}{$28$}{$29$}{$30$}$である.
(ii) $\displaystyle \sum_{k=7}^{14} a_k=\kakkofour{$31$}{$32$}{$33$}{$34$}$である.
(iii) $\{a_n\}$のうち,$m$桁である項の総和は$\displaystyle \frac{{[$35$]}^{m-1} \left\{ \left([$36$][$37$] \right)^m-[$38$] \right\}}{[$39$]}$である.
自治医科大学 私立 自治医科大学 2015年 第23問
$3$次方程式$x^3+bx^2+cx+d=0$($b,\ c,\ d$は実数)は,すべて異なる$3$つの実数解$\alpha,\ \beta,\ \gamma (\alpha<\beta<\gamma)$をもつとする.$\alpha+\beta+\gamma=3$,$\alpha^2+\beta^2+\gamma^2=9$,$\alpha\beta\gamma=k$であるとき,$k$のとりうる値の範囲は,$-p<k<0$($p$は正の実数)となる.$p$の値を求めよ.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2015年 第2問
$2$次方程式$x^2+ax+a+4=0$の$2$つの解が整数となるように定数$a$の値を定めよ.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2015年 第2問
次の方程式を解け.
\[ x^2+5 |x|-6=0 \]
倉敷芸術科学大学 私立 倉敷芸術科学大学 2015年 第4問
次の$2$つの放物線の共通接線の方程式を求めよ.
\[ \begin{array}{l}
y=(x+2)^2-3 \\
y=-(x-2)^2+3 \phantom{\frac{[ ]}{2}}
\end{array} \]
スポンサーリンク

「方程式」とは・・・

 まだこのタグの説明は執筆されていません。