「方程式」について
タグ「方程式」の検索結果
(162ページ目:全1641問中1611問~1620問を表示) 私立 神奈川大学 2010年 第3問
$2$次関数$y=f(x)$のグラフは,頂点が$\displaystyle \left( \frac{3}{2},\ -\frac{7}{2} \right)$で,点$(3,\ 1)$を通る.以下の問いに答えよ.
(1)$f(x)$を求め,$y=f(x)$のグラフをかけ.
(2)$y=f(x)$の接線のうち,傾きが$4$となるものの方程式を求めよ.
(3)$(2)$で求めた接線に平行で点$(2,\ 1)$を通る直線を$\ell$とする.直線$\ell$と放物線$y=f(x)$の交点の$x$座標を求めよ.
(4)直線$\ell$と放物線$y=f(x)$によって囲まれた部分の面積を求めよ.
(1)$f(x)$を求め,$y=f(x)$のグラフをかけ.
(2)$y=f(x)$の接線のうち,傾きが$4$となるものの方程式を求めよ.
(3)$(2)$で求めた接線に平行で点$(2,\ 1)$を通る直線を$\ell$とする.直線$\ell$と放物線$y=f(x)$の交点の$x$座標を求めよ.
(4)直線$\ell$と放物線$y=f(x)$によって囲まれた部分の面積を求めよ.
私立 神奈川大学 2010年 第2問
放物線$C:y=x^2$について,次の問いに答えよ.
(1)点$(1,\ 1)$を通り傾きが$a$である直線の方程式を求めよ.
(2)$(1)$で求めた直線と放物線$C$の共有点$\mathrm{P}$,$\mathrm{Q}$の座標を求めよ.
(3)線分$\mathrm{PQ}$の中点の軌跡の方程式を求めよ.ただし,$\mathrm{P}$と$\mathrm{Q}$が一致するとき,線分$\mathrm{PQ}$の中点とは$\mathrm{P}$を意味するものとする.
(4)$(3)$で求めた軌跡,放物線$C$および$y$軸で囲まれた図形の面積を求めよ.
(1)点$(1,\ 1)$を通り傾きが$a$である直線の方程式を求めよ.
(2)$(1)$で求めた直線と放物線$C$の共有点$\mathrm{P}$,$\mathrm{Q}$の座標を求めよ.
(3)線分$\mathrm{PQ}$の中点の軌跡の方程式を求めよ.ただし,$\mathrm{P}$と$\mathrm{Q}$が一致するとき,線分$\mathrm{PQ}$の中点とは$\mathrm{P}$を意味するものとする.
(4)$(3)$で求めた軌跡,放物線$C$および$y$軸で囲まれた図形の面積を求めよ.
私立 神奈川大学 2010年 第3問
曲線$C:y=e^x$と直線$\ell:y=x$について,次の問いに答えよ.ただし,$e$は自然対数の底である.
(1)曲線$C$上の点$\mathrm{P}(t,\ e^t)$を通り,直線$\ell$と直交する直線の方程式を求めよ.
(2)$(1)$で求めた直線と直線$\ell$との交点$\mathrm{Q}$の座標を$t$で表せ.
(3)点$\mathrm{P}$と点$\mathrm{Q}$の距離を$t$で表せ.
(4)$(3)$で求めた距離の最小値を求めよ.
(1)曲線$C$上の点$\mathrm{P}(t,\ e^t)$を通り,直線$\ell$と直交する直線の方程式を求めよ.
(2)$(1)$で求めた直線と直線$\ell$との交点$\mathrm{Q}$の座標を$t$で表せ.
(3)点$\mathrm{P}$と点$\mathrm{Q}$の距離を$t$で表せ.
(4)$(3)$で求めた距離の最小値を求めよ.
私立 神奈川大学 2010年 第1問
次の空欄$[ア]$~$[カ]$を適当に補え.
(1)円$x^2+y^2=3$と直線$x-y+k=0$が異なる$2$点で交わるとき,定数$k$の値の範囲は$[ア]$である.
(2)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$のとき,方程式$\cos 2x=5 \sin x-2$を解くと$x=[イ]$である.
(3)$t$を実数とする.$x$の$2$次関数$\displaystyle f(x)=\frac{1}{2}x^2-2tx+t$の最小値を$k$とする.$k$を最大にする$t$の値は$t=[ウ]$であり,そのときの$k$の値は$k=[エ]$である.
(4)$f(x)=x^3+3x^2$,$g(x)=2x^2$とする.$y=g(x)$のグラフを$x$軸方向に$-1$,$y$軸方向に$2$平行移動して得られるグラフの方程式を,$y=h(x)$とする.このとき,$y=h(x)$のグラフと$y=f(x)$のグラフの交点のうち,$x$座標の最も大きいものは$(x,\ y)=([オ],\ [カ])$である.
(1)円$x^2+y^2=3$と直線$x-y+k=0$が異なる$2$点で交わるとき,定数$k$の値の範囲は$[ア]$である.
(2)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$のとき,方程式$\cos 2x=5 \sin x-2$を解くと$x=[イ]$である.
(3)$t$を実数とする.$x$の$2$次関数$\displaystyle f(x)=\frac{1}{2}x^2-2tx+t$の最小値を$k$とする.$k$を最大にする$t$の値は$t=[ウ]$であり,そのときの$k$の値は$k=[エ]$である.
(4)$f(x)=x^3+3x^2$,$g(x)=2x^2$とする.$y=g(x)$のグラフを$x$軸方向に$-1$,$y$軸方向に$2$平行移動して得られるグラフの方程式を,$y=h(x)$とする.このとき,$y=h(x)$のグラフと$y=f(x)$のグラフの交点のうち,$x$座標の最も大きいものは$(x,\ y)=([オ],\ [カ])$である.
私立 神奈川大学 2010年 第1問
次の空欄$[$\mathrm{(a)]$}$~$[$\mathrm{(g)]$}$を適当に補え.
(1)$\displaystyle x=\frac{\sqrt{2}}{\sqrt{3}-\sqrt{2}},\ y=\frac{\sqrt{3}}{\sqrt{3}+\sqrt{2}}$のとき,$x+y$の値は$[$\mathrm{(a)]$}$である.
(2)$2$次方程式$2x^2+3x+k=0$において,$2$つの解の比が$1:2$であるとき,定数$k$の値は$[$\mathrm{(b)]$}$である.
(3)${64}^{1.5} \times {32}^{-0.4}=[$\mathrm{(c)]$}$である.
(4)$2$つのベクトル$\overrightarrow{a},\ \overrightarrow{b}$が,$|\overrightarrow{a}|=1$,$|\overrightarrow{b}|=2$,$|\overrightarrow{a}-\overrightarrow{b}|=2 \sqrt{2}$を満たすとき,$|\overrightarrow{a}+\overrightarrow{b}|=[$\mathrm{(d)]$}$である.
(5)$\displaystyle \left( 2x-\frac{1}{4} \right)^{10}$の展開式における$x^6$の係数は$[$\mathrm{(e)]$}$である.
(6)$0 \leqq \theta<2\pi$のとき,関数$y=\sin \theta+\sqrt{3} \cos \theta+2$の最小値は$[$\mathrm{(f)]$}$であり,そのときの$\theta$の値は$[$\mathrm{(g)]$}$である.
(1)$\displaystyle x=\frac{\sqrt{2}}{\sqrt{3}-\sqrt{2}},\ y=\frac{\sqrt{3}}{\sqrt{3}+\sqrt{2}}$のとき,$x+y$の値は$[$\mathrm{(a)]$}$である.
(2)$2$次方程式$2x^2+3x+k=0$において,$2$つの解の比が$1:2$であるとき,定数$k$の値は$[$\mathrm{(b)]$}$である.
(3)${64}^{1.5} \times {32}^{-0.4}=[$\mathrm{(c)]$}$である.
(4)$2$つのベクトル$\overrightarrow{a},\ \overrightarrow{b}$が,$|\overrightarrow{a}|=1$,$|\overrightarrow{b}|=2$,$|\overrightarrow{a}-\overrightarrow{b}|=2 \sqrt{2}$を満たすとき,$|\overrightarrow{a}+\overrightarrow{b}|=[$\mathrm{(d)]$}$である.
(5)$\displaystyle \left( 2x-\frac{1}{4} \right)^{10}$の展開式における$x^6$の係数は$[$\mathrm{(e)]$}$である.
(6)$0 \leqq \theta<2\pi$のとき,関数$y=\sin \theta+\sqrt{3} \cos \theta+2$の最小値は$[$\mathrm{(f)]$}$であり,そのときの$\theta$の値は$[$\mathrm{(g)]$}$である.
私立 広島工業大学 2010年 第5問
次の各問いに答えよ.
(1)方程式$x^2-x-8=|x|$を解け.
(2)$xy+3x-y-3=5$を満たす整数$x,\ y$の組を求めよ.
(3)$1$日の天気を晴れ,曇り,雨の$3$通りだとする.$4$日間で,晴れの日がちょうど$2$日ある場合は何通りあるか.
(1)方程式$x^2-x-8=|x|$を解け.
(2)$xy+3x-y-3=5$を満たす整数$x,\ y$の組を求めよ.
(3)$1$日の天気を晴れ,曇り,雨の$3$通りだとする.$4$日間で,晴れの日がちょうど$2$日ある場合は何通りあるか.
私立 広島工業大学 2010年 第1問
次の$[ ]$に適する答を記入せよ.
(1)等式$xy+3x-y-3=5$を満たす自然数$x,\ y$は$x=[ ]$,$y=[ ]$である.
(2)$\mathrm{O}$を原点とする座標平面に$2$点$\mathrm{A}(\cos \theta,\ \sin \theta)$と$\mathrm{B}(\cos 2\theta,\ \sin 2\theta) (0 \leqq \theta \leqq \pi)$がある.このとき,ベクトル$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$が垂直になるのは$\theta=[ ]$のときであり,$|\overrightarrow{\mathrm{AB}}|=1$となるのは$\theta=[ ]$のときである.
(3)$a,\ b$を実数の定数とする.方程式$x^3+ax+b=0$の$1$つの解が$1+\sqrt{2}i$であるとき,$a=[ ]$である.また,この方程式の実数解は$[ ]$である.ただし,$i$は虚数単位とする.
(1)等式$xy+3x-y-3=5$を満たす自然数$x,\ y$は$x=[ ]$,$y=[ ]$である.
(2)$\mathrm{O}$を原点とする座標平面に$2$点$\mathrm{A}(\cos \theta,\ \sin \theta)$と$\mathrm{B}(\cos 2\theta,\ \sin 2\theta) (0 \leqq \theta \leqq \pi)$がある.このとき,ベクトル$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$が垂直になるのは$\theta=[ ]$のときであり,$|\overrightarrow{\mathrm{AB}}|=1$となるのは$\theta=[ ]$のときである.
(3)$a,\ b$を実数の定数とする.方程式$x^3+ax+b=0$の$1$つの解が$1+\sqrt{2}i$であるとき,$a=[ ]$である.また,この方程式の実数解は$[ ]$である.ただし,$i$は虚数単位とする.
私立 神戸薬科大学 2010年 第4問
以下の文中の$[ ]$の中にいれるべき数または式を求めよ.
$0<p<2$をみたす実数$p$に対して,頂点が$(p,\ -p^2)$で点$(2,\ 0)$を通り軸が$y$軸に平行な放物線がある.
(1)この放物線の方程式を$p$を使って表すと$y=[ ]$となる.
(2)この放物線と$x$軸で囲まれる領域の面積を$p$を用いて表すと$[ ]$である.
(3)この放物線と$x$軸で囲まれる領域の面積が最大になるときの$p$の値は$[ ]$であり,そのときの面積は$[ ]$である.
$0<p<2$をみたす実数$p$に対して,頂点が$(p,\ -p^2)$で点$(2,\ 0)$を通り軸が$y$軸に平行な放物線がある.
(1)この放物線の方程式を$p$を使って表すと$y=[ ]$となる.
(2)この放物線と$x$軸で囲まれる領域の面積を$p$を用いて表すと$[ ]$である.
(3)この放物線と$x$軸で囲まれる領域の面積が最大になるときの$p$の値は$[ ]$であり,そのときの面積は$[ ]$である.
私立 ノートルダム清心女子大学 2010年 第2問
$a \neq 0$で$b^2-4ac \geqq 0$とするとき,$2$次方程式
\[ ax^2+bx+c=0 \]
の解$x$を与える公式
\[ x=\frac{-b \pm \sqrt{b^2-4ac}}{2a} \]
を導きなさい.
\[ ax^2+bx+c=0 \]
の解$x$を与える公式
\[ x=\frac{-b \pm \sqrt{b^2-4ac}}{2a} \]
を導きなさい.
公立 首都大学東京 2010年 第3問
実数$a,\ b,\ c,\ d$に対し$x$の3次の整式$P(x) = ax^3 + bx^2 + cx + d$を考える.ただし,$ad \neq 0$とする.方程式$P(x) = 0$の3つの解を$\alpha,\ \beta,\ \gamma$とすると$P(x) =a(x-\alpha)(x-\beta)(x-\gamma)$であることが知られている.このとき,以下の問いに答えなさい.
(1)積$\alpha \beta \gamma$,和$\alpha+ \beta + \gamma$,$\displaystyle \frac{1}{\alpha}+ \frac{1}{\beta}+ \frac{1}{\gamma}$を,それぞれ$a,\ b,\ c,\ d$を用いて表しなさい.
(2)もし$\alpha$が実数でないならば,方程式$P(x) = 0$は$\alpha$の共役な複素数$\overline{\alpha}$を解に持つことを証明しなさい.
(3)解$\alpha,\ \beta,\ \gamma$のうち実数となるものの個数は$0,\ 1,\ 2,\ 3$のどれか,考えられる可能性をすべて,理由も述べて答えなさい.
(4)もし$ad > 0$ならば,解$\alpha,\ \beta,\ \gamma$のうち正の実数となるものの個数は$0,\ 1,\ 2,\ 3$のどれか.考えられる可能性をすべて,理由も述べて答えなさい.
(1)積$\alpha \beta \gamma$,和$\alpha+ \beta + \gamma$,$\displaystyle \frac{1}{\alpha}+ \frac{1}{\beta}+ \frac{1}{\gamma}$を,それぞれ$a,\ b,\ c,\ d$を用いて表しなさい.
(2)もし$\alpha$が実数でないならば,方程式$P(x) = 0$は$\alpha$の共役な複素数$\overline{\alpha}$を解に持つことを証明しなさい.
(3)解$\alpha,\ \beta,\ \gamma$のうち実数となるものの個数は$0,\ 1,\ 2,\ 3$のどれか,考えられる可能性をすべて,理由も述べて答えなさい.
(4)もし$ad > 0$ならば,解$\alpha,\ \beta,\ \gamma$のうち正の実数となるものの個数は$0,\ 1,\ 2,\ 3$のどれか.考えられる可能性をすべて,理由も述べて答えなさい.