タグ「方程式」の検索結果

161ページ目:全1641問中1601問~1610問を表示)
東京電機大学 私立 東京電機大学 2010年 第5問
三角形$\mathrm{ABC}$があり,$\angle \mathrm{A}=120^\circ$とする.また,各辺の長さを$a=\mathrm{BC}$,$b=\mathrm{CA}$,$c=\mathrm{AB}$としたとき,$2$次方程式$kx^2-4x+1=0$の解が$b,\ c$であるという.ただし,$k$は正の実数とする.次の問に答えよ.

(1)$a$を$k$で表せ.
(2)三角形$\mathrm{ABC}$の面積を$k$で表せ.
(3)三角形$\mathrm{ABC}$の面積が$1$のとき,$a^2$を求めよ.
津田塾大学 私立 津田塾大学 2010年 第1問
次の問いに答えよ.

(1)$n$を自然数とする.全ての$x>0$に対して$x>n \log x$となるための$n$の条件を求めよ.ただし,$e=2.71 \cdots$である.
(2)座標平面上で点$(0,\ 2)$を中心とする半径$1$の円を$C$とする.$C$に外接し$x$軸に接する円の中心$\mathrm{P}(a,\ b)$が描く図形の方程式を求めよ.
津田塾大学 私立 津田塾大学 2010年 第1問
次の問に答えよ.

(1)$\triangle \mathrm{ABC}$の辺$\mathrm{BC}$を$t:(1-t)$に内分する点を$\mathrm{D}$とするとき,
\[ (1-t)\mathrm{AB}^2+t \mathrm{AC}^2=\mathrm{AD}^2+\frac{1-t}{t} \mathrm{BD}^2 \]
が成り立つことを示せ.ただし$0<t<1$とする.
(2)$f(x)=x^3+ax^2+bx$とする.ただし,$a,\ b$は実数で$a>0$とする.方程式$f(x)=0$がただ$1$つの実数解を持ち,関数$y=f(x)$が異なる$2$点$x=\alpha$,$x=\beta$で極値をとるとき,$\alpha,\ \beta$はいずれも負であることを示せ.
(3)連立不等式
\[ \left\{ \begin{array}{l}
y \geqq x^2-1 \\
y \leqq -x^2+3x+1 \\
x \geqq 0
\end{array} \right. \]
の表す領域の面積を求めよ.
津田塾大学 私立 津田塾大学 2010年 第3問
実数$A,\ B$に対して方程式$x^2-Ax+B=0$の解を$p,\ q$とする.ただし$B \neq 0$とする.

(1)自然数$n$に対して$b_n=p^n+q^n$とおくとき,$b_{n+2}-Ab_{n+1}+Bb_n=0$が成り立つことを示せ.
(2)自然数$n$に対して$a_n=(p^{-n}+q^{-n})(p+q)^n$とするとき,$a_{n+2}$を$a_{n+1},\ a_n,\ A,\ B$で表せ.
(3)$\displaystyle A=\frac{9}{2},\ B=\frac{3}{4}$とおくとき,$a_n$は任意の自然数$n$に対して整数となることを示せ.
北海道医療大学 私立 北海道医療大学 2010年 第2問
累乗根,対数,三角関数について以下の問に答えよ.

(1)次の式を簡単にせよ.
\[ \begin{array}{lll}
① \sqrt[8]{16^2} & & ② \sqrt[3]{4} \div \sqrt{8} \times \sqrt[4]{32} \\
③ \log_3 81 & & ④ (\log_23+\log_49)(\log_34+\log_92)
\end{array} \]
(2)$0^\circ<\theta<{90}^\circ$で,$\displaystyle \frac{1}{\cos \theta}-\frac{1}{\sin \theta}=\sqrt{3}$であるとする.

\mon[$(2$-$1)$] $x=\sin \theta \cos \theta$とするとき,$x$に関する$2$次方程式を求めよ.
\mon[$(2$-$2)$] $\sin \theta \cos \theta$の値を求めよ.
\mon[$(2$-$3)$] 次の値を求めよ.
\[ ① \sin \theta \qquad ② \tan \theta \]
\mon[$(2$-$4)$] 次の式の値を求めよ.
\[ ① \frac{1}{\cos {60}^\circ}-\frac{1}{\sin {60}^\circ} \qquad ② \frac{1}{\cos {75}^\circ}-\frac{1}{\sin {75}^\circ} \]
北海道医療大学 私立 北海道医療大学 2010年 第3問
関数$f(x)=x^2-1$と$g(x)=2a-f(x)$がある.ただし,$a$は定数とする.

(1)方程式$f(x)-g(x)=0$が異なる$2$つの実数解を持ち,かつ,それらが$-1$より大きいとき,$a$の値の範囲を求めよ.また,このとき,方程式$f(x)-g(x)=0$の解を求めよ.
(2)$a$が$(1)$で求めた範囲にあるとし,座標平面上に$y=f(x)$のグラフと$y=g(x)$のグラフがあるとする.

\mon[$(2$-$1)$] $y=f(x)$のグラフと$y=g(x)$のグラフとで囲まれる部分の面積$S_1$を$a$を用いて表せ.
\mon[$(2$-$2)$] $y=f(x)$のグラフと$y=g(x)$のグラフの共有点のうち,$x$座標が負である共有点を$\mathrm{P}$とする.このとき,直線$x=-1$,$\mathrm{P}$を通り$y$軸に平行な直線,$y=f(x)$のグラフ,および,$y=g(x)$のグラフとで囲まれる部分の面積$S_2$を$a$を用いて表せ.
\mon[$(2$-$3)$] 面積の和$S=S_1+S_2$を$a$を用いて表せ.
\mon[$(2$-$4)$] $(1)$で求めた範囲内で$a$を変化させたとき,$S$の最小値とその最小値を与える$a$の値を求めよ.
関西大学 私立 関西大学 2010年 第4問
次の$[ ]$をうめよ.

(1)$x^2-3x+5=0$の$2$つの解を$\alpha,\ \beta$とする.このとき,$\alpha^2+\beta^2=[$1$]$であり,さらに$\displaystyle \frac{\alpha}{\beta}+\frac{\beta}{\alpha}=[$2$]$である.
(2)$xy$平面上の$3$点$(1,\ 2)$,$(2,\ 4)$,$(3,\ 1)$にあと$1$点$\mathrm{A}$を加えることにより,それらが平行四辺形の$4$つの頂点になるとする.このとき,$\mathrm{A}$の$y$座標をすべて求めると$[$3$]$である.
(3)$n$は自然数とする.$(x+y+1)^n$を展開したとき,$xy$の項の係数は$90$であった.このときの$n$の値は$[$4$]$である.
(4)$-1<x$において,関数$f(x)$は
\[ f(x)=\lim_{n \to \infty} \frac{x^n}{x^{n+2}+x^n+1} \]
で定義されている.$f(x)$を求めると,ある値$\alpha$で$f(x)$が連続にならないことがわかる.このとき$f(\alpha)$と等しい値をとるもうひとつの$x$は$[$5$]$である.
(5)$i=\sqrt{-1}$とする.複素数$\alpha=1+\sqrt{3}i$に対して,$\displaystyle \frac{(\alpha+2)^6}{\alpha^3}$の値は$[$6$]$である.
(6)$0<x \leqq \pi$とする.方程式
\[ \sin 3x+\sin x=\cos x \]
の解$x$をすべて求めると$[$7$]$である.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2010年 第4問
$k$を実数の定数とするとき,下記の問いに答えなさい.

(1)$f(x)=2x^3+x^2-5x+3$,$g(x)=x^4+x^2-(k+1)x+k$とおく.$k$の値が変化するとき,曲線$y=f(x)$と$y=g(x)$の共有点の個数を調べなさい.
(2)$x$についての方程式$\displaystyle 6 \tan x+\cos x-k \sin x=0 \left( 0<x<\frac{\pi}{2} \right)$を考える.$k$の値が変化するとき,実数解の個数が$2$個であるのは$[$1$]$のときである.また実数解の個数が$1$個であるのは$[$2$]$のときであり,実数解が存在しないのは$[$3$]$のときである.
$[$1$]$,$[$2$]$,$[$3$]$に該当する$k$の条件を答えなさい.
早稲田大学 私立 早稲田大学 2010年 第2問
方程式$3^{2-\log_2 x}+26\cdot 3^{-\log_4 x}-3 = 0$を解くと,$x=$[カ]となる.
早稲田大学 私立 早稲田大学 2010年 第3問
係数$a,\ b$が整数である$3$次方程式$x^3+ax^2+bx+1=0$が$2$つの虚数解と$1$つの整数解をもつ.これを満たす整数の組$(a,\ b)$は$[キ]$組あり,そのうち$a$の値が最大となる組は$(a, \ b)=([ク],\ [ケ])$である.
スポンサーリンク

「方程式」とは・・・

 まだこのタグの説明は執筆されていません。