タグ「斜線」の検索結果

1ページ目:全13問中1問~10問を表示)
九州工業大学 国立 九州工業大学 2016年 第2問
原点$\mathrm{O}$を中心とする半径$1$の円を$C_1$とする.円$C_1$に外接しながら,半径$1$の円$C_2$がすべることなく回転する.円$C_2$の中心を$\mathrm{P}$とし,円$C_2$上の点$\mathrm{Q}$は最初,$x$軸上の点$\mathrm{A}(3,\ 0)$にあるものとする.半直線$\mathrm{PQ}$上で点$\mathrm{P}$からの距離が$2$の点を$\mathrm{R}$とし,$\mathrm{OP}$が$x$軸の正の向きとなす角を$\theta$とする.$C_2$が回転して$\theta$が$0$から$2\pi$まで変化するとき,点$\mathrm{R}$が描く曲線を$C$とする.曲線$C$の概形を図$1$に示す.以下の問いに答えよ.
(図は省略)

(1)点$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{P}$を通り$x$軸と平行な直線を$\ell$とする.直線$\ell$と線分$\mathrm{PR}$のなす角$\alpha$を,$\theta$を用いて表せ.また,$\mathrm{R}$の座標を$\theta$を用いて表せ.
(3)曲線$C$と$x$軸の共有点の座標をすべて求めよ.
(4)曲線$C$と$y$軸の共有点の座標をすべて求めよ.
(5)点$\mathrm{R}$の$x$座標が最小となるときの点$\mathrm{R}$の座標をすべて求めよ.
(6)曲線$C$と$x$軸,$y$軸に囲まれた図$2$の斜線部分の面積を求めよ.
津田塾大学 私立 津田塾大学 2016年 第2問
$1$辺の長さが$L \, \mathrm{cm}$の正六角形から図のように斜線部を取り除き,点線にそって${90}^\circ$折り曲げて,底面と側面だけからなる正六角柱の容器を作る.この容器の容積の最大値を求めよ.
(図は省略)
慶應義塾大学 私立 慶應義塾大学 2015年 第5問
方程式$y=|x|$を満たす座標平面上の点$(x,\ y)$全体の集合$B$を

$B=\{(x,\ y) \;\bigl| \;$点$(x,\ y)$は方程式$y=|x|$を満たす$\}$

と表す.同様に,集合$C_r(a,\ b)$,$D$をそれぞれ

$C_r(a,\ b)=\{(x,\ y) \;\bigl| \;$点$(x,\ y)$は方程式$(x-a)^2+(y-b)^2=r^2$を満たす$\}$,
\qquad\quad\;\! $D=\{(x,\ y) \;\bigl| \;$点$(x,\ y)$は不等式$y \leqq |x|$を満たす$\}$

で定める.ただし,$a,\ b$は実数,$r$は正の実数とする.

(1)集合$B \cap C_r(1,\ 2)$が$2$個の要素からなるように,$r$の値の範囲を定めよ.
(2)$C_{2 \sqrt{2}}(a,\ b) \subset D$が成り立つような点$(a,\ b)$全体の集合を斜線で図示せよ.
小樽商科大学 国立 小樽商科大学 2014年 第4問
下図のように半径$1$の円$C_1$の内部に半径$x$の円$C_2$と半径$(1-x)$の円$C_3$が内接している.ただし$0<x<1$とする.円$C_1$の内部で円$C_2$と円$C_3$の外部の部分(図の斜線部分)の面積の最大値を求めよ.
(図は省略)
慶應義塾大学 私立 慶應義塾大学 2014年 第5問
$a$を実数とする.$2$次関数
\[ f(x)=x^2-ax+1 \]
の区間$0 \leqq x \leqq 1$における最大値を$M(a)$,最小値を$m(a)$と表す.

(1)$2$つの関数$b=M(a)$と$b=m(a)$のグラフをかけ.
(2)$b$を実数とする.$2$次方程式
\[ x^2-ax+1-b=0 \]
が区間$0 \leqq x \leqq 1$において少なくとも$1$つの解を持つような点$(a,\ b)$全体の集合を,$(1)$を用いて斜線で図示せよ.
安田女子大学 私立 安田女子大学 2014年 第3問
次の問いに答えよ.

(1)次の不等式の表す領域を図示せよ.ただし,作図は,定規やコンパスは使わず,全てフリーハンドで行い,該当領域には斜線を入れよ.
\[ (x-y-1)(x+y+1)>0 \]
(2)下の図の$2$つの直線と$1$つの円で囲まれた斜線部分の領域(境界線は含まない)を$1$つの不等式で表せ.
(図は省略)
ノートルダム清心女子大学 私立 ノートルダム清心女子大学 2014年 第3問
次の設問に答えなさい.

(1)三角形$\mathrm{ABC}$について$\sin B$を$3$辺の長さ$a,\ b,\ c$を用いて表しなさい.

\begin{zahyou*}[ul=1.8mm](-20,20)(-5,20)%
\tenretu*{A(10,14);B(-15,0);C(15,0)}%
{\thicklines
\Drawline{\A\B\C\A}%
}
\Kakukigou\B\A\C{}%
\Kakukigou\C\B\A<Hankei=6mm>{}%
\Kakukigou\A\C\B{}%
\emathPut{(9,15.5)}{$\mathrm{A}$}
\emathPut{(-18,-1)}{$\mathrm{B}$}
\emathPut{(17,-1)}{$\mathrm{C}$}
\emathPut{(7.5,9)}{$A$}
\emathPut{(-9.5,0.7)}{$B$}
\emathPut{(9.5,0.7)}{$C$}
\emathPut{(0,-3)}{$a$}
\emathPut{(14.5,8)}{$b$}
\emathPut{(-5.5,8)}{$c$}
\end{zahyou*}

(2)下図のように半径$R$の円に外接する正三角形を$\triangle \mathrm{ABC}$とし,内接する正三角形を$\triangle \mathrm{DEF}$とします.このとき$\triangle \mathrm{ABC}$と$\triangle \mathrm{DEF}$で囲まれた図形(図中の斜線部分)の面積を求めなさい.

\begin{zahyou*}[ul=1.5mm](-20,20)(-10,25)%
\tenretu*{O(0,0);A(0,20);B(-17.32,-10);C(17.32,-10);D(0,10);E(-8.66,-5);F(8.66,-5)}%
{\thicklines
\emPaint*{\A\B\C}
\Nuritubusi[0]{\D\E\F\D}%
\En\O{10}%
\Drawline{\A\B\C\A}%
\Drawline{\D\E\F\D}%
}
\emathPut{(-0.8,21)}{$\mathrm{A}$}
\emathPut{(-20.8,-11)}{$\mathrm{B}$}
\emathPut{(19,-11)}{$\mathrm{C}$}
\emathPut{(-0.8,5.5)}{$\mathrm{D}$}
\emathPut{(-6.2,-4)}{$\mathrm{E}$}
\emathPut{(4.5,-4)}{$\mathrm{F}$}
\end{zahyou*}
西南学院大学 私立 西南学院大学 2012年 第3問
原点を$\mathrm{O}$とし,下図のように$3$つの円$C_1$,$C_2$,$C_3$が互いに接している.$C_2$の中心を$\mathrm{O}_2$,$C_1$と$C_2$の接点を$\mathrm{P}$,$C_2$と$C_3$の接点を$\mathrm{Q}$,$C_3$と$C_1$の接点を$\mathrm{R}$とする.$C_1$と$C_2$の方程式が
\[ C_1:x^2+y^2=\left( \frac{\sqrt{3}-1}{2} \right)^2,\quad C_2:x^2+(y-\sqrt{3})^2=\left( \frac{\sqrt{3}+1}{2} \right)^2 \]
であるとき,以下の問に答えよ.
(図は省略)

(1)$\displaystyle C_3:(x-[シ])^2+y^2=\left( \frac{[ス]-\sqrt{[セ]}}{[ソ]} \right)^2$である.
(2)弧$\mathrm{RP}$は円$C_1$の短い方の弧を指すものとし,他の弧についても同様とする.また扇形$\mathrm{RPO}$とは弧$\mathrm{RP}$を含む扇形とする.このとき,扇形$\mathrm{PQO}_2$の面積は
\[ \frac{[タ]+\sqrt{[チ]}}{[ツテ]}\pi \]
であることより,$3$つの弧$\mathrm{PQ}$,$\mathrm{QR}$,$\mathrm{RP}$で囲まれる図形(図の斜線部)の面積は
\[ \frac{\sqrt{[ト]}}{[ナ]}-\frac{[ニ]-[ヌ] \sqrt{[ネ]}}{[ノ]} \pi \]
である.
広島国際学院大学 私立 広島国際学院大学 2012年 第5問
下図のように,円と$2$つの直線によって指定される領域がある.
(図は省略)

(1)斜線の領域を表す不等式を求めなさい.ただし,境界線を含むものとする.
(2)斜線の領域の面積$S$を求めなさい.
安田女子大学 私立 安田女子大学 2012年 第3問
$1$辺の長さが$1$の正方形の紙を用意し,頂点を$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.次の図のように,正方形の各辺を底辺とする高さ$x$の$4$つの二等辺三角形$\triangle \mathrm{ABE}$,$\triangle \mathrm{BCF}$,$\triangle \mathrm{CDG}$,$\triangle \mathrm{DAH}$を正方形から切り取り,残りを図の$4$本の線分$\mathrm{EF}$,$\mathrm{FG}$,$\mathrm{GH}$,$\mathrm{HE}$にそって折り曲げて,点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$が$1$点になるように辺を合わせて四角錐を作るとする.ただし,$\displaystyle 0<x<\frac{1}{2}$とする.このとき,次の問いに答えよ.
(図は省略)

(1)この四角錐の底面となる正方形$\mathrm{EFGH}$の面積を求めよ.
(2)この四角錐の表面積となる図の斜線部分の面積を求めよ.
(3)$(2)$で求めた四角錐の表面積が$\displaystyle \frac{1}{2}$のとき,この四角錐の体積を求めよ.
スポンサーリンク

「斜線」とは・・・

 まだこのタグの説明は執筆されていません。