タグ「整数」の検索結果

73ページ目:全1020問中721問~730問を表示)
上智大学 私立 上智大学 2012年 第1問
次の各問に答えよ.

(1)関数$f(x)$を
\[ f(x) = \log_4 32x - \log_8 64x + \log_{16} 8x\]
とする.$5 \leqq f(x) \leqq 10$となるためにの必要十分条件は
\[ 2^a \leqq x \leqq 2^b,\quad a=[ア],\ b=[イ] \]
である.
(2)関数$g(x)$を
\[ g(x) = 4\cos^2 \frac{x}{2} +2\sin^2\frac{x}{2} +\sqrt{3}\sin x \]
とする.$0 \leqq x < 2\pi$とすると,$\displaystyle x=\frac{[ウ]}{[エ]}\pi$のとき$g(x)$は最大値をとる.
(3)$m$と$n$を$m \geqq n$を満たす正の整数とする.3辺の長さがそれぞれ$m+1,\ m,\ n$であり,それらの和が100以下であるような直角三角形は,全部で[オ]個ある.また,そのうち面積が最も大きいものの斜辺の長さは[カ]である.
法政大学 私立 法政大学 2012年 第2問
$0$から$6$までの$7$個の数字の中から異なる$3$個の数字を用いて,$3$桁の整数をつくる.

(1)$5$の倍数は全部で何個できるか.
(2)一の位,十の位,百の位にある$3$つの数の積が$5$の倍数となるものは全部で何個できるか.なお,$0$は$5$の倍数である.
(3)一の位,十の位,百の位にある$3$つの数の和が$5$の倍数となるものは全部で何個できるか.
法政大学 私立 法政大学 2012年 第2問
$f(x)=x^2-5$として,数列$\{a_n\}$を次のように定義する.\\
\quad $a_1=3$,点$(a_n,\ f(a_n))$における曲線$y=f(x)$の接線が$x$軸と交わる点の$x$座標を$a_{n+1}$とする$(n=1,\ 2,\ 3,\ \cdots)$。\\
\quad 次の問いに答えよ.

(1)$a_{n+1}$を$a_n$で表せ.
(2)命題$P(n)$を$\lceil \sqrt{5} < a_{n+1} < a_n \rfloor$とするとき,すべての正の整数$n$に対して$P(n)$が成り立つことを数学的帰納法によって証明せよ.
(3)次の不等式が共に成り立つ1より小さい正の数$r$が存在することを示せ.

(4)$a_{n+1}-\sqrt{5} \leqq r(a_n-\sqrt{5}) \quad (n=1,\ 2,\ 3,\ \cdots)$
(5)$a_n -\sqrt{5} \leqq r^{n-1} \quad (n= 1,\ 2,\ 3,\ \cdots)$
法政大学 私立 法政大学 2012年 第2問
$2$つの数列$\{a_n\},\ \{b_n\}$は,つぎの関係式を満たす.
\[ \begin{array}{ll}
a_1=5, & a_{n+1}=4a_n+3b_n, \\
b_1=1, & b_{n+1}=3a_n+kb_n
\end{array} \quad (n \geqq 1) \]
すべての$n$に対し$a_n-b_n$が一定の値であるとき,つぎの問いに答えよ.

(1)$k$の値を求めよ.
(2)数列$\{a_n\}$の一般項を求めよ.
(3)$c_n=a_n+lb_n$とする.$\{c_n\}$が等比数列となる正の整数$l$を求めよ.また,この$\{c_n\}$に対し,$\displaystyle S_n=\sum_{k=1}^n c_k$を求めよ.
法政大学 私立 法政大学 2012年 第2問
$n$を$2$以上の整数とする.

(1)平面上の平行な$2$直線上に,相異なる点がそれぞれ$n$個ずつある.これらの$2n$個の点から$3$点を選ぶ.

(i) $n=5$のとき,この選び方は全部で$[アイウ]$通りあり,選んだ$3$点が$1$直線上にあるような選び方は$[エオ]$通りある.
(ii) 選んだ$3$点が三角形をつくるような選び方は$\displaystyle \left( [カ]-[キ] \right)$通りある.
ただし,$[カ]$,$[キ]$については,以下の$①$~$\marukyu$からそれぞれ$1$つを選べ.ここで,同じものを何回選んでもよい.
\[ \begin{array}{lllllllll}
① n & & ② 2n & & ③ 3n & & ④ n^2 & & ⑤ 2n^2 \\
⑥ 3n^2 & & ④chi n^3 & & \maruhachi 2n^3 & & \marukyu 3n^3 & &
\end{array} \]

(2)$\mathrm{O}$を中心とする円の円周を等分する$2n$個の点がある.これらの$2n$個の点と点$\mathrm{O}$から$3$点を選ぶ.

(i) $n=3$のとき,選んだ$3$点が三角形をつくるような選び方は$[クケ]$通りある.

(ii) 選んだ$3$点が三角形をつくるような選び方は$\displaystyle \frac{n \left( [コ] n^{[サ]}-[シ] \right)}{[ス]}$通りある.
(iii) $n=12$のとき,選んだ$3$点が正三角形をつくるような選び方は$[セソ]$通りある.
立教大学 私立 立教大学 2012年 第1問
次の空欄ア~ケに当てはまる数または式を記入せよ.

(1)$(x-2y)^8$の展開式における$x^5y^3$の係数は[ア]である.
(2)$\displaystyle \int_0^2 (x^2-ax+2)\, dx=0$の等式を満たす定数$a$の値は[イ]である.
(3)$1$から$200$までの整数で,$3$および$7$のいずれでも割りきれない数の個数は[ウ]個である.
(4)方程式$5x+3y+z=15$を満たす自然数$x,\ y,\ z$の組の個数は[エ]個である.
(5)原点$\mathrm{O}$から出発して数直線上を動く点$\mathrm{P}$がある.点$\mathrm{P}$は,サイコロを振って偶数の目が出るとその目の数に$+3$をかけた数だけ移動し,奇数の目が出るとその目の数に$-2$をかけた数だけ移動する.このサイコロを$1$回振るときの点$\mathrm{P}$の数直線上の位置の期待値は[オ]である.
(6)$a=\log_2 5,\ b=\log_2 9$とおく.$\log_4 150$を$a,\ b$を用いて表すと[カ]である.
(7)複素数$z$が$\displaystyle z=\frac{a}{1-3i}+\frac{bi}{1+3i}$で与えられたとき,$z=4i$となるような実数$a,\ b$を求めると,$a=[キ],\ b=[ク]$である.ただし,$i$は虚数単位とする.
(8)$\mathrm{O}$を原点とする座標平面上に長さが等しいベクトル$\overrightarrow{\mathrm{OP}}=(2,\ 6)$と$\overrightarrow{\mathrm{OQ}}$がある.$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OQ}}$のなす角が$\displaystyle \frac{\pi}{3}$であるとき,点$\mathrm{Q}$の$x$座標は[ケ]である.ただし,点$\mathrm{Q}$の$x$座標は$2$より小さいとする.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2012年 第2問
次の連立不等式を満たす整数$x$の値をすべて求めよ.
\[ \left\{
\begin{array}{l}
x^2-3x-6 \geqq -2 \\
x^2-3x-6 < 2x
\end{array}
\right. \]
倉敷芸術科学大学 私立 倉敷芸術科学大学 2012年 第2問
次の連立不等式を満たす整数$x$の値をすべて求めよ.
\[ \left\{
\begin{array}{l}
x^2-3x-6 \geqq -2 \\
x^2-3x-6 < 2x
\end{array}
\right. \]
川崎医療福祉大学 私立 川崎医療福祉大学 2012年 第1問
次の問に答えなさい.

(1)式$8x^2-2x-15$を因数分解すると,
\[ ([$1$]x-[$2$])([$3$]x+[$4$]) \]
となる.
(2)$x$に関する$2$次方程式$2x^2-(2m-3)x-3m=0$が重解を持つとき,$m=[$5$]$である.
(3)$\displaystyle \frac{\sqrt{6}}{\displaystyle\frac{1}{\sqrt{2}}+\displaystyle\frac{1}{\sqrt{3}}} = [$6$] (\sqrt{[$7$]} - \sqrt{[$8$]})$である.

(4)$\displaystyle \frac{3\sqrt{2}-4\sqrt{3}}{\sqrt{2}}$より大きい整数のうち,最小の整数は[$9$]である.
(5)$4$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$を頂点とする長方形の辺$\mathrm{AB}$の長さを$a$とする.さらに$4$点$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$があり,$4$つの三角形$\mathrm{ABE}$,三角形$\mathrm{BCF}$,三角形$\mathrm{CDG}$,三角形$\mathrm{DAH}$はすべて長方形$\mathrm{ABCD}$の外側にある正三角形であるとする.このとき,点$\mathrm{A}$,$\mathrm{E}$,$\mathrm{B}$,$\mathrm{F}$,$\mathrm{C}$,$\mathrm{G}$,$\mathrm{D}$,$\mathrm{H}$,$\mathrm{A}$をこの順に線分で結んでできる図形の周の長さを$L$とする.\\
\quad $L$を一定とするとき,長方形$\mathrm{ABCD}$の面積が最大になるのは$a=[$10$]$のときで,そのときの長方形$\mathrm{ABCD}$の面積は[$11$]である.
北海学園大学 私立 北海学園大学 2012年 第5問
箱の中に赤玉$20$個と白玉$n$個が入っている.この箱の中から$1$個の玉を取り出し,それが赤玉ならば$300$円,白玉ならば$100$円を受け取ることができる.ただし,$n$は正の整数である.

(1)赤玉を取り出す確率が$\displaystyle \frac{3}{4}$以上となるような$n$の値をすべて求めよ.
(2)$n=10$のとき,受け取ることができる金額の期待値を求めよ.
(3)受け取ることができる金額の期待値が,$210$円以上かつ$220$円以下となるような$n$の値をすべて求めよ.
スポンサーリンク

「整数」とは・・・

 まだこのタグの説明は執筆されていません。