タグ「整数」の検索結果

44ページ目:全1020問中431問~440問を表示)
千葉工業大学 私立 千葉工業大学 2014年 第1問
次の各問に答えよ.

(1)$\displaystyle x<\frac{\sqrt{3}}{1-\sqrt{3}}$をみたす最大の整数$x$は$[アイ]$である.
(2)等式$\displaystyle \frac{x+5}{x^2+x-2}=\frac{a}{x-1}+\frac{b}{x+2}$が$x$についての恒等式であるとき,$a=[ウ]$,$b=[エオ]$である.
(3)点$(-4,\ a)$と直線$3x+4y-1=0$との距離が$1$であるとき,$a=[カ]$または$\displaystyle \frac{[キ]}{[ク]}$である.
(4)$\displaystyle \left( x-\frac{2}{3} \right)^9$の展開式において,$x^8$の係数は$[ケコ]$であり,$x^7$の係数は$[サシ]$である.
(5)$\overrightarrow{a}=(3,\ t+1,\ 1)$と$\displaystyle \overrightarrow{b}=\left( 2,\ -3,\ \frac{3}{2}t \right)$が垂直であるとき,$t=[ス]$である.
(6)$\displaystyle (5^{\frac{1}{3}}-5^{-\frac{1}{3}})(5^{\frac{2}{3}}+1+5^{-\frac{2}{3}})=\frac{[セソ]}{[タ]}$である.
(7)$\log_{10}2=p$とおくと,$\log_{10}5=[チ]-p$であり,$\displaystyle \log_4 500=\frac{[ツ]-p}{[テ]p}$である.
(8)$\displaystyle \int_{-1}^2 (-x^2+3 |x|) \, dx=\frac{[ト]}{[ナ]}$である.
近畿大学 私立 近畿大学 2014年 第3問
$xy$平面上の点$\mathrm{P}$の$x$座標,$y$座標をそれぞれ$\mathrm{P}_x$,$\mathrm{P}_y$と書く.$\mathrm{P}_x$,$\mathrm{P}_y$がともに整数であるような点$\mathrm{P}$を格子点という.次の問に答えよ.

(1)原点$\mathrm{O}$と点$\mathrm{A}(18,\ 12)$を結ぶ線分$\mathrm{OA}$がある.線分$\mathrm{OA}$上にある格子点の個数を求めよ.ただし両端$\mathrm{O}$,$\mathrm{A}$も線分$\mathrm{OA}$上の点とする.
(2)$\mathrm{O}$,$\mathrm{A}$と点$\mathrm{B}(18,\ 0)$を頂点とする$\triangle \mathrm{OAB}$の周または内部にある格子点の個数を求めよ.
(3)$n$を正の整数とする.$2$点$\mathrm{C}(n,\ 0)$,$\mathrm{D}(0,\ n)$を考える.格子点$\mathrm{P}$が$\triangle \mathrm{OCD}$の周または内部を動くとき$\mathrm{P}_x$の総和を$m_1$とおく.また$|\mathrm{P|_x-\mathrm{P}_y}$の総和を$n$が偶数のとき$m_2$,$n$が奇数のとき$m_3$とする.$m_1$,$m_2$,$m_3$を$n$の式で表せ.ただし解答は$an^3+bn^2+cn+d$のように$n$の次数について整理し,降べきの順(次数の高い順)に書くこと.
産業医科大学 私立 産業医科大学 2014年 第1問
空欄にあてはまる適切な数,式,記号などを記入しなさい.

(1)実数$x$の関数$f(x)=|\sin 2x+2 \sin x+2 \cos x|$の最大値は$[ア]$である.
(2)行列$A=\left( \begin{array}{cc}
\cos \theta & -2 \sin \theta \\
\displaystyle\frac{1}{2} \sin \theta & \cos \theta
\end{array} \right)$が$0<\theta<\pi$の範囲で$A^5=A^2$を満たすとき,実数$\theta$の値は$[イ]$である.
(3)定積分$\displaystyle \int_0^{-1} \frac{x^2-1}{x^2+1} \, dx$の値は$[ウ]$である.
(4)$n$をある自然数とする.実数$x$に対して,方程式$7 \sin^{8n} x+x=0$の解の個数は$[エ]$である.
(5)$\displaystyle 0<a<\frac{1}{4}$とする.座標平面において,方程式$\displaystyle -4ax+\sqrt{(x+a)^2+y^2}=\frac{1}{4}$で表される曲線が囲む図形の面積は$[オ]$である.
(6)$x+y+z+w=20$を満たす正の整数$x,\ y,\ z,\ w$の組は全部で$[カ]$個である.
(7)$7$つの実数$\displaystyle \frac{1}{2}$,$\sqrt{\pi}$,$\sqrt{3}$,$\displaystyle \frac{\pi^2}{8}$,$\displaystyle \sin \frac{\pi}{8}$,$\displaystyle \cos \frac{\pi}{8}$,$\displaystyle \tan \frac{\pi}{8}$を小さい方から順に並べたものを$A<B<C<D<E<F<G$とする.このとき実数$A^2$の値は$[キ]$であり,$E^2-F^2+G^2$の値は$[ク]$である.
名城大学 私立 名城大学 2014年 第1問
次の$[ ]$に答えを記入せよ.

(1)$2$個のさいころを振って,出た目の逆数の和が整数になる確率は$[ア]$である.また,$3$個のさいころを振って,出た目の逆数の和が$1$になる確率は$[イ]$である.
(2)座標平面で直線$y=3x$についての対称移動を$f$,原点を中心とした${60}^\circ$の回転移動を$g$とする.点$\mathrm{P}(2,\ -1)$の$f$による像を点$\mathrm{Q}$とし,点$\mathrm{Q}$の$g$による像を点$\mathrm{R}$とするとき,点$\mathrm{Q}$の$x$座標は$[ウ]$,点$\mathrm{R}$の$x$座標は$[エ]$である.
京都薬科大学 私立 京都薬科大学 2014年 第3問
$\triangle \mathrm{OAB}$において,$\mathrm{OA}=1$,$\mathrm{OB}=2$,$\angle \mathrm{AOB}=\theta$とする.$\angle \mathrm{AOB}$の二等分線と辺$\mathrm{AB}$との交点を$\mathrm{C}$とする.次の$[ ]$にあてはまる数または式を記入せよ.ただし,$[ク]$~$[サ]$には整数を記入しなさい.

(1)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$を用いて表すと,
\[ \overrightarrow{\mathrm{OC}}=[ア] \overrightarrow{\mathrm{OA}}+[イ] \overrightarrow{\mathrm{OB}} \]
となる.
(2)直線$\mathrm{OC}$上に点$\mathrm{P}$をとり,さらに点$\mathrm{P}$が辺$\mathrm{AB}$の垂直二等分線上にあるとき,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$および$\cos \theta$を用いて表すと,
\[ \overrightarrow{\mathrm{OP}}=[ウ] \overrightarrow{\mathrm{OA}}+[エ] \overrightarrow{\mathrm{OB}} \]
となる.このとき,$\mathrm{OC}:\mathrm{CP}=3:1$となるならば,$\cos \theta=[オ]$である.
(3)辺$\mathrm{OB}$上に点$\mathrm{D}$を$\mathrm{OD}:\mathrm{DB}=1:3$となるようにとる.線分$\mathrm{AD}$と線分$\mathrm{OC}$の交点を$\mathrm{Q}$とし,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$を用いて表すと,
\[ \overrightarrow{\mathrm{OQ}}=[カ] \overrightarrow{\mathrm{OA}}+[キ] \overrightarrow{\mathrm{OB}} \]
となる.このとき,$\triangle \mathrm{OAQ}$,$\triangle \mathrm{QAC}$,$\triangle \mathrm{OQD}$および四角形$\mathrm{QCBD}$の面積をそれぞれ,$S_1,\ S_2,\ S_3,\ S_4$とすると,$S_1:S_2:S_3:S_4=[ク]:[ケ]:[コ]:[サ]$となる.
京都薬科大学 私立 京都薬科大学 2014年 第4問
実数$x$に対して,$x$を超えない最大整数を$[x]$で表すとする.例えば,$[2]=2$,$\displaystyle \left[ \frac{10}{3} \right]=3$である.次の$[ ]$のうち,$[オ]$と$[カ]$には式を,その他には整数を記入せよ.

(1)$[-5.2]=[ア]$となる.

(2)$\displaystyle \left[ \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}} \right]=[イ]$,$\displaystyle \left[ \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}} \right]=[ウ]$,

$\displaystyle \left[ \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}} \right]=[エ]$となる.

(3)不等式
\[ \frac{1}{\sqrt{k+1}+\sqrt{k}}<\frac{1}{2 \sqrt{k}}<\frac{1}{\sqrt{k}+\sqrt{k-1}} \]
の各辺を$k=2$から$k=n$まで,それぞれ加え合わせると,
\[ [オ]<\sum_{k=2}^n \frac{1}{\sqrt{k}}<[カ] \]
が得られる.ここで,$n$は$2$以上の整数とする.これにより,
\[ [キ] \times \sqrt{n}-[ク]-1<\sum_{k=1}^n \frac{1}{\sqrt{k}}<[キ] \times \sqrt{n}-[ク] \]
となる.よって,
\[ \left[ \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots +\frac{1}{\sqrt{9999}}+\frac{1}{\sqrt{10000}} \right]=[ケ] \]
である.
(4)同様にして,
\[ \left[ \frac{1}{\sqrt{100}}+\frac{1}{\sqrt{101}}+\frac{1}{\sqrt{102}}+\cdots +\frac{1}{\sqrt{9999}}+\frac{1}{\sqrt{10000}} \right]=[コ] \]
となる.
学習院大学 私立 学習院大学 2014年 第1問
大中小$3$つのサイコロを同時に投げ,出た目をそれぞれ$a,\ b,\ c$とする.また,これらを並べてできる$3$桁の整数$abc$を$n$とする.たとえば,$a=2$,$b=5$,$c=1$なら$n=251$である.

(1)$n$が偶数である確率を求めよ.
(2)$n$を$3$で割った余りが$2$である確率を求めよ.
(3)$n \geqq 325$である確率を求めよ.
広島修道大学 私立 広島修道大学 2014年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)$(3x+2)(2x^2-5x+3)$を展開すると,$[$1$]$となる.
(2)男子$5$人,女子$3$人が$1$列に並ぶとき,女子$3$人が続いて並ぶ方法は$[$2$]$通り,一端に男子,もう一端に女子が並ぶ方法は$[$3$]$通りある.
(3)$\displaystyle \frac{1+2i}{1-3i}+\frac{1-4i}{1+3i}=a+bi$($a,\ b$は実数)と表すとき,$a=[$4$]$,$b=[$5$]$である.
(4)$1,\ 2,\ 3,\ 4,\ 5$の$5$個の数字を用いて$3$桁の整数をつくるとき,奇数は全部で$[$6$]$個できる.ただし,同じ数字を繰り返し用いてもよい.
(5)$0 \leqq \theta \leqq \pi$のとき,関数$y=-2 \sin^2 \theta+8 \cos \theta+3$は,$\theta=[$7$]$のとき,最小値$[$8$]$をとる.
(6)不等式$\displaystyle \frac{1}{9^x}-\frac{30}{3^x}+81 \leqq 0$の解は$[$9$]$である.また,$-2 \leqq x \leqq 0$において関数$\displaystyle y=\frac{1}{9^x}-\frac{30}{3^x}+81$は,$x=[$10$]$のとき,最小値$[$11$]$をとる.
早稲田大学 私立 早稲田大学 2014年 第3問
$a,\ b,\ c$は整数,$n$は$0$以上の整数とする.座標空間において,次の条件$(ⅰ)$,$(ⅱ)$を満たす点$(a,\ b,\ c)$の個数を$S(n)$とする.

$(ⅰ)$ $a+b+c=0$
$(ⅱ)$ $|a|+|b|+|c| \leqq n$

次の設問に答えよ.

(1)$S(2)$を求めよ.
(2)$S(2n)$を求めよ.
早稲田大学 私立 早稲田大学 2014年 第2問
$\displaystyle \sin \theta=\frac{4}{5}$を満たす$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$に対し,$a_n=5^n \sin n\theta$とおく($n=1,\ 2,\ \cdots$).次の問いに答えよ.

(1)数列$\{a_n\}$は,ある整数$A,\ B$を用いて
\[ a_{n+2}=Aa_{n+1}+Ba_n \]
と表される.このとき,$A,\ B$の値を求めよ.
(2)$a_n$は$5$で割ると$4$余る整数であることを証明せよ.
(3)$\theta$は円周率$\pi$の有理数倍ではないことを証明せよ.
スポンサーリンク

「整数」とは・・・

 まだこのタグの説明は執筆されていません。