タグ「数字」の検索結果

19ページ目:全290問中181問~190問を表示)
早稲田大学 私立 早稲田大学 2012年 第2問
次の問に答えよ.

(1)$4$個の数字$2,\ 4,\ 9,\ 12$から重複を許して$4$個選ぶとき,選んだ$4$個の数の平均が$8$になる確率は$[カ]$である.
(2)$\mathrm{A}$,$\mathrm{B}$の$2$人が$1$つのサイコロを$1$回ずつ交互に投げる.$\mathrm{A}$から始めて$\mathrm{A}$,$\mathrm{B}$,$\mathrm{A}$,$\mathrm{B}$の順で$1$人$2$回,$2$人あわせて$4$回投げるものとする.

(3)先に$2$回偶数を出した人を勝ちとするとき,$\mathrm{B}$が勝つ確率は$[キ]$である.
(4)先に$2$回$1$の目を出した人を勝ちとするとき,$\mathrm{B}$が勝つ確率は$[ク]$である.
慶應義塾大学 私立 慶應義塾大学 2012年 第1問
次の空欄に当てはまる数字を書け.

(1)$\mathrm{A}$の袋には赤玉$1$個と黒玉$15$個,$\mathrm{B}$の袋には黒玉$16$個が入っている.それぞれの袋から$1$個ずつ玉を取り出して交換する,という試行を$n$回繰り返したとき,赤玉が$\mathrm{A}$の袋に入っている確率を$p_n$とする.ただし,$n$は自然数である.例えば,
\[ p_1 = \frac{[$1$][$2$]}{[$3$][$4$]},\ p_2 = \frac{[$5$][$6$][$7$]}{[$8$][$9$][$10$]} \]
である.$p_{n+1}$を$p_n$で表すと,$p_{n+1}=\displaystyle\frac{[$11$]}{[$12$]}p_n+\displaystyle\frac{[$13$]}{[$14$][$15$]}$となるので,これより
\[ p_n = \frac{[$16$]}{[$17$]}\left\{1+\left(\frac{[$18$]}{[$19$]}\right)^n\right\} \]
と求まる.
(2)赤玉$7$個,白玉$10$個,青玉$n$個が入った袋から,同時に$4$個の玉を取り出すとき,それらが赤玉$1$個,白玉$2$個,青玉$1$個である確率を$q_n$とする.ただし,$n$は自然数である.$\displaystyle\frac{q_{n+1}}{q_n}$を$n$の式で表すと,
\[ \frac{q_{n+1}}{q_n} = \frac{n^2+[$20$][$21$]n+[$22$][$23$]}{n^2+[$24$][$25$]n} \]
となる.これより$n \leq [$26$]$の範囲で$q_n < q_{n+1}$が成り立ち,また,$n \geq [$27$]$の範囲で$q_n > q_{n+1}$が成り立つことがわかる.従って,$q_n$は$n= [$28$]$で最大値$\displaystyle\frac{[$29$][$30$]}{[$31$][$32$][$33$]}$をとる.
東京理科大学 私立 東京理科大学 2012年 第1問
次の文章中の$[ア]$から$[ラ]$までに当てはまる数字$0$~$9$を求めて記入せよ.ただし,分数は既約分数として表しなさい.

(1)数列$\{a_n\},\ \{b_n\} (n=1,\ 2,\ 3,\ \cdots)$は次の関係式を満たすとする.
\[ a_1=0, \quad \left\{ \begin{array}{l}
b_n=\displaystyle\frac{1}{5}a_n+1 \\
a_{n+1}=3b_n+2
\end{array} \right. \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,$b_1 = [ア]$で,$n \geq 1$に対して$b_{n+1} = \displaystyle\frac{[イ]}{[ウ]} b_n + \frac{[エ]}{[オ]}$となる.これより,
\[ b_n = \displaystyle\frac{[カ]}{[キ]} - \frac{[ク]}{[ケ]} \left(\frac{[コ]}{[サ]} \right)^{n-1} \quad (n \geq 1) \]
となるので,
\[ \lim_{n \to \infty} b_n = \frac{[シ]}{[ス]}, \qquad \lim_{n \to \infty} \frac{b_{2n}-b_n}{b_{n+1}-b_n} = \frac{[セ]}{[ソ]} \]
となる。また,
\[ \sum_{n=1}^{\infty} (a_{2n}-a_n) = \frac{[タ][チ][ツ]}{[テ][ト]} \]
である.
(2)複素数$z = \cos\theta + i\sin\theta (0 \leq \theta<2\pi)$に対して,複素数$\omega$を
\[ \omega = (4+3i)z + 6i\,\overline{z} \]
で定める.ただし,$i$は虚数単位を,$\overline{z}=\cos\theta-i\sin\theta$は$z$と共役な複素数を表す.
いま$z$の実部と虚部がともに$0$以上となる範囲で$\theta$を動かす.このとき,$\omega$の実部の最大値は[ナ],最小値は[ニ]であり,$\omega \overline{\omega}$の最大値は[ヌ][ネ][ノ],最小値は[ハ][ヒ]である.ただし,$\overline{\omega}$は$\omega$と共役な複素数を表す.

(3)$x>0$で定義された微分可能な関数$f(x)$が,
\[ f^\prime(x) = 2\log x + \frac{1}{7-2e} \int_1^{e} \frac{f(t)}{t}\, dt, \quad f(1)=0 \]
を満たすとする.ここで,$f^\prime(x)$は$f(x)$の導関数,$\log$は自然対数,$e$は自然対数の底である.$f(x)$を求めると,
\[ f(x) = [フ] x\log x - \frac{[ヘ]}{[ホ]} x + \frac{[マ]}{[ミ]} \quad (x>0) \]
となる.関数$f(x)$は$\displaystyle x=e^{-\frac{[ム]}{[メ]}}$のとき,最小値
\[ -[モ]e^{-\frac{[ヤ]}{[ユ]}} + \frac{[ヨ]}{[ラ]}\]
をとる。
明治大学 私立 明治大学 2012年 第3問
次の各設問の$[12]$から$[15]$までの空欄に適するものを書け.また,$[ ]$には数字を入れよ.

$xy$平面上で連立不等式$3x-y+1 \geqq 0,\ x+3y-3 \geqq 0,\ 2x+y-6 \leqq 0$の表す領域を$D$とする.
(1)点$(x,\ y)$が領域$D$を動くとき,$3x+2y$の最大値は$[12]$であり,最小値は$[13]$である.
(2)領域$D$は三角形である.この三角形の外接円の中心の座標は$([14],\ [15])$であり,半径は$[ ]$である.
明治大学 私立 明治大学 2012年 第4問
次の各設問の[16]と[17]の空欄に数字を入れよ.また,[\phantom{ア]}には文字式を入れ完成させよ.\\
\quad 条件$\displaystyle a_1 = 1,\ a_{n+1}=\frac{9a_n}{3a_n+5} \quad (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$がある.

(1)$\displaystyle b_n=\frac{1}{a_n}$とし,$b_{n+1}-q=p(b_n-q)$と変形すると,実数$p,\ q$はそれぞれ$p = [16],\ q=[17]$である.
(2)数列$\{a_n\}$の一般項は$a_n = [\phantom{ア]}$である.
東京理科大学 私立 東京理科大学 2012年 第1問
$n$を$2$以上$9$以下の自然数とする.$1$から$n$までの数字が書いてある$n$枚のカードを入れた袋から,カードを順に$2$枚引いて,引いた順に右から並べて$2$桁の数を作り,それらのカードを袋に戻す試行を考える.次の各問いに答えよ.

(1)$n=9$のとき,この試行によって得られた$2$桁の数が$3$の倍数である確率は$\displaystyle\frac{[ア]}{[イ]}$である.
(2)この試行を$2$回繰り返すとき,$1$回目の数が$2$回目の数以上となる確率を$P(n)$とする.このとき,$P(5)=\displaystyle\frac{[ウエ]}{[オカ]}$である.また,$P(n) \geq \displaystyle\frac{7}{13}$となる最大の$n$の値は[キ]である.
明治大学 私立 明治大学 2012年 第2問
次の$[ ]$に当てはまる$0$~$9$の数字を解答欄に書け.

座標平面上にある$2$点$\mathrm{P}(2t,\ 2t^3)$,$\mathrm{Q}(-4,\ 4t^2-8)$が,$-2 \leqq t \leqq 2$の範囲で動く.$\ell:y=x+b$とし,$\mathrm{P}$と$\ell$の距離を$\alpha$,$\mathrm{Q}$と$\ell$の距離を$\beta$とする.$\mathrm{P}$は,$\ell$より上側にあり,$\mathrm{Q}$は,$\ell$より下側にあるとする.$\mathrm{P}$,$\mathrm{Q}$,$\ell$の位置関係から$b$の範囲は,
$[ア]t^2 - [イ] < b < [ウ] t^3 - [エ]t$
となる.従って,$t$の範囲は,
$-[オ] < t < [カ]$
でなければならない.

$\displaystyle \alpha = \frac{1}{\sqrt{2}} |[キ]t^3 - [ク]t - b|,$
$\displaystyle \beta = \frac{1}{\sqrt{2}} |[ケ]t^2 - [コ] - b|$

だから,$\alpha = \beta$とすると,$b = (t+[サ])(t^2 - [シ])$である.
従って,$\displaystyle \alpha = \beta = \frac{1}{\sqrt{2}} |(t-[ス])(t^2-[セ])|$となり,
この値が,最大となるのは,$t=\frac{[ソ]-\sqrt{[タ]}}{[チ]}$のときで,そのときの値は
\[ \alpha = \frac{[ツ][テ]\sqrt{[ト]}+[ナ]\sqrt{[ニ][ヌ]}}{[ネ][ノ]} \]
である.
明治大学 私立 明治大学 2012年 第1問
空欄$[ ]$に当てはまるものを入れよ.

(1)$5$個の数字$0$,$1$,$2$,$3$,$4$を並べて$5$桁の整数を作る.小さい順にこれらの整数を並べたとき,$57$番目の整数は$\fbox{\footnotesize \phantom{a}アイウエオ\phantom{a}}$である.また,偶数である整数は$[カキ]$個あり,$4$の倍数である整数は$[クケ]$個ある.
(2)次の連立方程式
\[ \left\{ \begin{array}{l}
\log_xy+2 \log_y x=3 \\
\log_x(y^2+xy)=2
\end{array} \right. \]
の解は$\displaystyle x=\frac{-[コ]+\sqrt{[サ]}}{[シ]}$,$\displaystyle y=\frac{[ス]-\sqrt{[セ]}}{[ソ]}$である.
(3)自然数$1,\ 2,\ \cdots,\ n$の中から異なる二つの数を選んで積を作る.このような積全ての和を$S_n$とおく.ただし,$S_1=0$とする.$S_n$と$S_{n-1}$の間には漸化式
\[ S_n=S_{n-1}+n \cdot \frac{[タ]}{[チ]} \]
が成り立つ.これを使って,$S_n$を求めると
\[ S_n=\frac{1}{[ツテ]} \cdot n(n+1)([ト]) \]
となる.
上智大学 私立 上智大学 2012年 第1問
次の各問に答えよ.

(1)$5$個の数字$0,\ 1,\ 2,\ 3,\ 4$を重複なく使ってできる$5$桁の整数を小さい方から順に並べたとき,$70$番目の数を$100$で割った余りは$[ア]$である.
(2)$\displaystyle 16^{\log_2 3}=[イ]$である.
(3)$m^n=1024$を満たす自然数の組$(m,\ n)$は$[ウ]$通りある.その中で最小の$m$は$[エ]$,最小の$n$は$[オ]$である.
(4)$x$の式$(1+x+ax^2)^6$を展開したときの$x^4$の係数は,$a=[カ]$のときに最小値$[キ]$をとる.
法政大学 私立 法政大学 2012年 第2問
$0$から$6$までの$7$個の数字の中から異なる$3$個の数字を用いて,$3$桁の整数をつくる.

(1)$5$の倍数は全部で何個できるか.
(2)一の位,十の位,百の位にある$3$つの数の積が$5$の倍数となるものは全部で何個できるか.なお,$0$は$5$の倍数である.
(3)一の位,十の位,百の位にある$3$つの数の和が$5$の倍数となるものは全部で何個できるか.
スポンサーリンク

「数字」とは・・・

 まだこのタグの説明は執筆されていません。