タグ「数字」の検索結果

13ページ目:全290問中121問~130問を表示)
武庫川女子大学 私立 武庫川女子大学 2014年 第1問
次の空欄$[$1$]$~$[$18$]$にあてはまる数字を入れよ.

$2$次関数$f(x)=ax^2-2ax+2a^2+4a+1$(ただし,$a$は$a \neq 0$を満たす実数)とする.

(1)$y=f(x)$のグラフの頂点の$x$座標は$[$1$]$であり,$y$座標は
\[ [$2$]a^2+[$3$]a+[$4$] \]
である.
(2)$y=f(x)$のグラフの頂点の$y$座標が負となるとき,$a$のとり得る値の範囲は
\[ -[$5$]<a<-\frac{[$6$]}{[$7$]} \]
である.
(3)$y=f(x)$のグラフの頂点の$y$座標は

$\displaystyle a=-\frac{[$8$]}{[$9$]}$のとき,最小値$\displaystyle -\frac{[$10$]}{[$11$]}$をとる.

(4)$2$次方程式$f(x)=0$が負の解をもつとき,$a$のとり得る値の範囲は,
\[ a<\frac{-[$12$]-\sqrt{[$13$]}}{[$14$]},\quad \frac{-[$15$]+\sqrt{[$16$]}}{[$17$]}<a<[$18$] \]
である.
武庫川女子大学 私立 武庫川女子大学 2014年 第2問
次の空欄$[$19$]$~$[$42$]$にあてはまる数字を入れよ.ただし,空欄$[$19$]$,$[$21$]$には$+$または$-$の記号が入る.

(1)原点$\mathrm{O}$を中心とする半径$5$の円と直線$y=-2x$との交点のうち,$y$座標が正となる点を$\mathrm{A}$とする.線分$\mathrm{OA}$が$x$軸の正の向きとなす角を$\theta (0^\circ<\theta<{180}^\circ)$とする.

(i) $\tan \theta=[$19$][$20$]$であり,
$\cos \theta=[$21$] \frac{\sqrt{[$22$]}}{[$23$]}$であり,

点$\mathrm{A}$の座標は$\displaystyle \left( -\sqrt{[$24$]},\ [$25$] \sqrt{[$26$]} \right)$である.
(i) 点$(3 \sqrt{5},\ 0)$を$\mathrm{B}$とするとき,$\mathrm{AB}=[$27$][$28$]$であり,三角形$\mathrm{OAB}$の外接円の半径は$\displaystyle \frac{[$29$] \sqrt{[$30$]}}{[$31$]}$である.

(2)下図のように半径$r$の扇形$\mathrm{ABC}$があり,$\angle \mathrm{CAB}={90}^\circ$とする.直線$\mathrm{CA}$の延長線上に点$\mathrm{D}$をとり,$\displaystyle \sin \angle \mathrm{ADB}=\frac{1}{5}$とする.この扇形$\mathrm{ABC}$と三角形$\mathrm{ADB}$の両方からなる図形を直線$\mathrm{CD}$を軸として回転させてできる立体の表面積を$S$,体積を$V$とする.

(i) $\displaystyle r=\frac{3}{2}$のときの$S$は,$r=1$のときの$\displaystyle \frac{[$32$]}{[$33$]}$倍であり,$V$は$r=1$のときの$\displaystyle \frac{[$34$][$35$]}{[$36$][$37$]}$倍である.
(ii) $r=1$のとき,$S=[$38$] \pi$であり,
$\displaystyle V=\frac{[$39$]}{[$40$]} \left( [$41$]+\sqrt{[$42$]} \right) \pi$である.
(図は省略)
武庫川女子大学 私立 武庫川女子大学 2014年 第1問
次の空欄$[$1$]$~$[$18$]$にあてはまる数字を入れよ.

(1)$\displaystyle \sqrt{\frac{31 \sqrt{3}+31 \sqrt{5}-10 \sqrt{42}-6 \sqrt{70}}{\sqrt{5}+\sqrt{3}}}$

$=\sqrt{[$1$][$2$]-[$3$] \sqrt{[$4$][$5$][$6$]}}$

$=\sqrt{[$7$][$8$]}-\sqrt{[$9$][$10$]}$

(2)$\mathrm{AB}=10$,$\mathrm{BC}=16$,$\angle \mathrm{ABC}={60}^\circ$の三角形$\mathrm{ABC}$を底面とする三角柱の内部に球がある.球は,三角柱の$5$つの面すべてに接している.このとき,

(i) 底面の三角形の面積は$[$11$][$12$] \sqrt{[$13$]}$である.
(ii) 球の半径は$[$14$] \sqrt{[$15$]}$である.
(iii) 三角柱の体積は$[$16$][$17$][$18$]$である.
武庫川女子大学 私立 武庫川女子大学 2014年 第2問
次の空欄$[$19$]$~$[$37$]$にあてはまる数字を入れよ.

$xy$平面上に,双曲線$x^2-y^2=1$がある.この双曲線と直線$y=ax+3$が点$\mathrm{P}$で接している.ただし$a>0$とする.このとき,

(1)$a=\sqrt{[$19$][$20$]}$

$\mathrm{P}$の座標は$\displaystyle \left( -\frac{\sqrt{[$21$][$22$]}}{[$23$]},\ -\frac{[$24$]}{[$25$]} \right)$である.

(2)この双曲線上に点$\mathrm{Q}(s,\ t)$がある.線分$\mathrm{PQ}$の中点を$\mathrm{M}$とすると,$\mathrm{M}$の座標は
\[ \left( \frac{s}{2}-\frac{\sqrt{[$26$][$27$]}}{[$28$]},\ \frac{t}{2}-\frac{[$29$]}{[$30$]} \right) \]
と表すことができる.また,$\mathrm{M}$の軌跡は双曲線$\displaystyle x^2-y^2=\frac{[$31$]}{[$32$]}$を

$x$軸方向に$\displaystyle -\frac{\sqrt{[$33$][$34$]}}{[$35$]}$,$y$軸方向に$\displaystyle -\frac{[$36$]}{[$37$]}$だけ平行移動して得られる双曲線である.
武庫川女子大学 私立 武庫川女子大学 2014年 第3問
次の空欄$[$38$]$~$[$60$]$にあてはまる数字を入れよ.

原点を$\mathrm{O}$とする座標平面上に$4$点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(1,\ 0)$,$\mathrm{C}(0,\ -1)$,$\mathrm{D}(\cos \theta,\ 0)$がある.ただし$\displaystyle 0<\theta<\frac{\pi}{2}$とする.このとき,
(1)$\triangle \mathrm{ABD}$の面積は$\displaystyle \frac{[$38$]-\cos \theta}{[$39$]}$
$2$点$\mathrm{B}$,$\mathrm{C}$を通る直線$\ell_1$の方程式は
\[ y=x-[$40$] \]
$2$点$\mathrm{A}$,$\mathrm{D}$を通る直線$\ell_2$の方程式は
\[ y=-\frac{x}{\cos \theta}+[$41$] \]
$\ell_1$と$\ell_2$の交点を$\mathrm{E}$とすると,$\mathrm{E}$の座標は
\[ \left( \frac{[$42$] \cos \theta}{[$43$]+\cos \theta},\ \frac{-[$44$]+\cos \theta}{[$45$]+\cos \theta} \right) \]
である.
(2)$\angle \mathrm{ADO}=\angle \mathrm{BDF}$をみたす点$\mathrm{F}$を線分$\mathrm{AB}$上にとると,$\mathrm{F}$の座標は
\[ \left( \frac{[$46$] \cos \theta}{[$47$]+\cos \theta},\ \frac{[$48$]-\cos \theta}{[$49$]+\cos \theta} \right) \]
$\triangle \mathrm{ADF}$の面積を$S$とおくと,
\[ S=[$50$]-\cos \theta-\frac{[$51$]}{[$52$]+\cos \theta} \]
相加平均と相乗平均の関係より,
\[ [$52$]+\cos \theta+\frac{[$51$]}{[$52$]+\cos \theta} \geqq [$53$] \sqrt{$[$54$]$} \]
この等号は$\cos \theta=-[$55$]+\sqrt{[$56$]}$のとき成立する.よって
\[ [$57$]<S \leqq [$58$]-[$59$] \sqrt{[$60$]} \]
である.
上智大学 私立 上智大学 2014年 第1問
次の問いに答えよ.

(1)$a$を実数とする.実数$x$に対して,$[x]$は$x$以下の最大の整数を表す.方程式
\[ \left[ \frac{1}{2}x \right]=x-a \]
が$0 \leqq x<4$の範囲に異なる$2$つの実数解をもつような$a$の範囲は$[ア] \leqq a<[イ]$である.
(2)$\displaystyle \frac{1}{4-\sqrt{11}}$を小数で表すとき,小数第$1$位の数字は$[ウ]$である.
(3)${(x^2+\sqrt{2}y)}^6$の展開式における$x^8y^2$の係数は$[エ]$である.
(4)$k$を実数とする.$2$つの$2$次方程式
\[ x^2-(k-1)x+k+2=0,\quad x^2-(k+1)x+k^2-5=0 \]
が,どちらも$2$つの異なる実数解をもつような$k$の範囲は
\[ \frac{[オ]}{[カ]}<k<[キ] \]
であり,少なくともどちらか一方が$2$つの異なる実数解をもつような$k$の範囲は
\[ k<[ク] \quad \text{または} \quad [ケ]<k \]
である.
上智大学 私立 上智大学 2014年 第1問
次の問いに答えよ.

(1)$3^{2014}$は$[ア]$桁の数であり,最も大きい位の数字は$[イ]$,一の位の数字は$[ウ]$である.ただし,
\[ \log_{10}2=0.3010,\quad \log_{10}3=0.4771,\quad \log_{10}7=0.8451 \]
とする.
(2)連立不等式
\[ \left\{ \begin{array}{l}
y \leqq -2x^2-8x-3 \\
y \geqq |3x+6| \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
で表される座標平面上の領域を$D$とする.

(i) $D$の面積は$\displaystyle \frac{[エ]}{[オ]}$である.
(ii) 点$(x,\ y)$が$D$を動くとする.

\mon[$\mathrm{(a)}$] $4x+y$の最大値は$[カ]$,最小値は$[キ]$である.
\mon[$\mathrm{(b)}$] $x^2+4x+y$の最大値は$[ク]$,最小値は$[ケ]$である.
上智大学 私立 上智大学 2014年 第3問
$1$から$10$までの数字を$1$つずつ書いた$10$枚のカードを数字の小さい順に左から右に並べる.この中から$3$枚を無作為に選び,いずれのカードも元の位置と異なる位置に置くという操作を考える.この操作を$2$回以上続けて行う場合,$2$回目以降はカードの並びを一番最初の状態に戻すことはせず,$1$回前の操作で置き換えられた状態から$3$枚を無作為に選ぶ.また,選んだ$3$枚のカードについて元の位置と異なる位置への置き方が複数あるとき,いずれの置き方も等しい確率で選ばれるものとする.置き換えの操作を$n$回続けて行ったとき,一番左のカードが$10$である確率を$P_n$で表す.

(1)$\displaystyle P_1=\frac{[ハ]}{[ヒ]}$である.
(2)$n$回の操作の後で一番左のカードが$10$であり,$(n+1)$回目の操作の後も一番左のカードが$10$となる確率を$P_n$の式で表すと$\displaystyle \frac{[フ]}{[ヘ]}P_n$となる.
(3)$n$回の操作の後で一番左のカードが$10$ではなく,$(n+1)$回目の操作の後で一番左のカードが$10$となる確率を$P_n$の式で表すと$\displaystyle \frac{[ホ]P_n+[マ]}{[ミ]}$となる.
(4)$P_{n+1}$を$P_n$の式で表すと
\[ P_{n+1}=\frac{[ム]}{[メ]}P_n+\frac{[モ]}{[ヤ]} \]
となる.
(5)$\displaystyle P_n=\frac{[ユ]}{[ヨ]} \left( \frac{[ラ]}{[リ]} \right)^n+\frac{[ル]}{[レ]}$である.
東京理科大学 私立 東京理科大学 2014年 第4問
次の$[ ]$内にあてはまる$0$から$9$までの数字を求めよ.

次の曲線と直線について考える.ただし,$a,\ b,\ c,\ d$は実数で,$a>0$,$b$は$0$でないとする.

$C:y=ax^2+bx+c$
$\ell_1:y=x$
$\displaystyle \ell_2:y=-\frac{1}{b}x-d$

$C$は,$x$軸と点$\mathrm{P}$で接し,$\ell_1$と点$\mathrm{Q}$で接する.$\ell_2$は点$\mathrm{P}$を通るものとする.また,$\ell_1$と$\ell_2$の交点を$\mathrm{R}$とする.

(1)$\displaystyle b=\frac{[リ]}{[ル]},\ ac=\frac{[レ]}{[ロ][ワ]}$
(2)$2$直線$\ell_1,\ \ell_2$と曲線$C$で囲まれる図形の面積が$2$であるとき,
\[ a=\frac{[ヲ]}{[ン]},\quad d=[あ] \]
である.
(3)このときの点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$の座標はそれぞれ,
\[ \mathrm{P} (-[い],\ 0),\quad \mathrm{Q}([う],\ [う]),\quad \mathrm{R} \left( -\frac{[え]}{[お]},\ -\frac{[え]}{[お]} \right) \]
である.
立教大学 私立 立教大学 2014年 第1問
次の空欄$[ア]$,$[イ]$に「真」または「偽」のいずれかを記入せよ.また空欄$[ウ]$~$[サ]$に当てはまる数または式を記入せよ.

(1)実数$a,\ b$について,命題「$ab=0$ならば$b=0$である」の逆は$[ア]$であり,裏は$[イ]$である.
(2)$\displaystyle x=\frac{\sqrt{5}-1}{\sqrt{5}+1}$のとき,$\displaystyle x^2+\frac{1}{x^2}=[ウ]$,$\displaystyle x^4+\frac{1}{x^4}=[エ]$と,いずれも整数で表せる.
(3)すべての実数$x$について$2$次不等式$x^2-2(k+1)x+2k^2>0$が成立するような実数$k$の範囲は$[オ]$である.
(4)$1$から$4$までの数字が$1$つずつ書かれたカードをそれぞれ$2$枚用意する.この$8$枚のカードから$6$枚を同時に引き,その中で最大の数を$X$とするとき,$X$の期待値は$[カ]$である.
(5)$0 \leqq \theta \leqq \pi$のとき,$\sqrt{3} \cos \theta+\sin \theta$の最大値は$[キ]$であり,最小値は$[ク]$である.
(6)方程式$\log_{\frac{1}{2}}x^2+\log_2 x^{\frac{9}{2}}+\log_4 x^{-1}=4$を満たす$x$の値は$[ケ]$である.
(7)等差数列をなす$3$つの数がある.これらの和が$1$で,平方の和が$\displaystyle \frac{11}{24}$であるとき,$3$つの数は$[コ]$である.
(8)ベクトル$\overrightarrow{a}=(1,\ x)$,$\overrightarrow{b}=(2,\ -1)$について,$\overrightarrow{a}+\overrightarrow{b}$と$2 \overrightarrow{a}-3 \overrightarrow{b}$が垂直であるときの$x$の値をすべて求めると,$[サ]$である.
スポンサーリンク

「数字」とは・・・

 まだこのタグの説明は執筆されていません。