タグ「数列の和」の検索結果

22ページ目:全498問中211問~220問を表示)
浜松医科大学 国立 浜松医科大学 2014年 第3問
以下の問いに答えよ.

(1)$r$は自然数,$n$は$r$より大きい整数とする.$2$項係数$\comb{k+r}{r} (k=0,\ 1,\ \cdots,\ n-r)$の次の等式を示せ.
\[ \sum_{k=0}^{n-r} \comb{k+r}{r}=\comb{n+1}{r+1} \]
以下整数$n (n \geqq 2)$に対し,次の確率分布に従う確率変数$X$を考える.
\[ P(X=k)=\frac{\comb{k+1}{1}}{\comb{n+1}{2}} \quad (k=0,\ 1,\ \cdots,\ n-1) \]
(2)$X$の期待値$\mu_n=E(X)$を求めよ.また,$\displaystyle P(X \geqq m) \geqq \frac{1}{2}$を満たす最大の整数$m$を$M_n$とするとき,極限値$\displaystyle \lim_{n \to \infty} \frac{M_n}{\mu_n}$を求めよ.
和歌山大学 国立 和歌山大学 2014年 第1問
数列$\{a_n\}$,$\{b_n\}$が,$a_n=\sqrt{2n+1}-\sqrt{2n-1}$,$\displaystyle b_n=\frac{1}{\sqrt{2n-1}}$で定められている.このとき,次の問いに答えよ.

(1)$n \geqq 1$に対して,$b_{n+1}<a_n<b_n$が成り立つことを示せ.
(2)$\displaystyle 8<\sum_{k=1}^{40} b_k<9$が成り立つことを示せ.
茨城大学 国立 茨城大学 2014年 第1問
以下の各問に答えよ.

(1)$\displaystyle \frac{{(1+i)}^3}{-2+3i}=a+bi$を満たす実数$a,\ b$を求めよ.ただし,$i$は虚数単位である.
(2)$3$つの行列の積$\left( \begin{array}{cc}
2 & 1 \\
4 & 3
\end{array} \right) \left( \begin{array}{c}
1 \\
4
\end{array} \right) \left( \begin{array}{cc}
2 & 3
\end{array} \right)$を計算せよ.
(3)$f(x)={(x+4)}^{\frac{5}{6}}{(3x+2)}^{\frac{4}{3}}$とする.関数$f(x)$の$x=0$における微分係数$f^\prime(0)$を求めよ.
(4)極限$\displaystyle \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \cos \frac{k \pi}{3n}$を求めよ.
和歌山大学 国立 和歌山大学 2014年 第1問
数列$\{a_n\}$,$\{b_n\}$が,$a_n=\sqrt{2n+1}-\sqrt{2n-1}$,$\displaystyle b_n=\frac{1}{\sqrt{2n-1}}$で定められている.このとき,次の問いに答えよ.

(1)$n \geqq 1$に対して,$b_{n+1}<a_n<b_n$が成り立つことを示せ.
(2)$\displaystyle 8<\sum_{k=1}^{40} b_k<9$が成り立つことを示せ.
京都工芸繊維大学 国立 京都工芸繊維大学 2014年 第3問
関数$f(x)=e^{-\sqrt{3}x}(1-\cos x)$を考える.自然数$n$に対し,区間$2(n-1) \pi \leqq x \leqq 2n \pi$における関数$f(x)$の最大値を$A_n$とする.

(1)$A_1$を求めよ.
(2)自然数$n$に対し,$A_n$を$n$を用いて表せ.
(3)無限級数$\displaystyle \sum_{n=1}^\infty A_n$の和を求めよ.
東京農工大学 国立 東京農工大学 2014年 第3問
$e$は自然対数の底とする.$\mathrm{O}$を原点とする座標平面に$3$点
\[ \mathrm{A}(e^{-\theta}+\sqrt{3},\ e^{-\theta}),\quad \mathrm{B}(\cos \theta,\ \sin \theta),\quad \mathrm{C}(\sqrt{3},\ 0) \]
がある.ただし,$\theta \geqq 0$とする.次の問いに答えよ.

(1)三角形$\mathrm{ABC}$の面積を$F(\theta)$とする.$F(\theta)$を求めよ.
(2)$F(\theta)$の導関数を$F^\prime(\theta)$とする.区間$0<\theta<2\pi$において$F^\prime(\theta)=0$となる$\theta$の値をすべて求めよ.
(3)$n$を自然数とする.区間$2(n-1) \pi \leqq \theta \leqq 2n\pi$における$F(\theta)$の最大値,最小値をそれぞれ$\alpha_n$,$\beta_n$とする.$\alpha_n$,$\beta_n$を求めよ.また最大値を与える$\theta$の値と最小値を与える$\theta$の値を求めよ.
(4)$(3)$で求めた$\alpha_n (n=1,\ 2,\ 3,\ \cdots)$に対して,$\displaystyle S=\sum_{n=1}^\infty \alpha_n$とおく.$S$の値を求めよ.
愛媛大学 国立 愛媛大学 2014年 第2問
次の問いに答えよ.

(1)すべての実数$x$に対して
\[ f(x)=\sin \pi x+\int_0^1 tf(t) \, dt \]
が成り立つような関数$f(x)$を求めよ.
(2)次の極限値を求めよ.
\[ \lim_{\theta \to 0} \frac{\theta^3}{\tan \theta-\sin \theta} \]
(3)次の極限値を求めよ.
\[ \lim_{n \to \infty} \sum_{k=n+1}^{2n} \frac{1}{k} \]
(4)関数$f(x)=|x| (e^x+a)$は$x=0$において微分可能であるとする.このとき,定数$a$の値を求めよ.
京都教育大学 国立 京都教育大学 2014年 第2問
$\theta$を実数とし,
\[ X_n=\sum_{k=0}^{n-1} \cos k\theta,\quad Y_n=\sum_{k=0}^{n-1} \sin k\theta \quad (n=1,\ 2,\ \cdots) \]
とする.このとき,

$X_n \cos \theta-Y_n \sin \theta=X_{n+1}-1,$
$X_n \sin \theta+Y_n \cos \theta=Y_{n+1}$

$(n=1,\ 2,\ \cdots)$であることを証明せよ.
秋田大学 国立 秋田大学 2014年 第2問
条件$a_1=0$,$a_{n+1}=4a_n+3 (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$がある.関数$f_n(x)$と$g(x)$が
\[ \begin{array}{l}
f_n(x)=a_nx^2+a_n+1 \\
g(x)=x^3+3x^2-9x+4 \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \]
で定義されるとき,次の問いに答えよ.

(1)数列$\{a_n\}$の一般項を求めよ.また,$\displaystyle \sum_{k=1}^n a_k$を求めよ.
(2)関数$y=|f_2(x)-g(x)|$のグラフをかけ.また,$-3 \leqq x \leqq 3$の範囲で$y$の値の最大値とそのときの$x$の値を求めよ.
秋田大学 国立 秋田大学 2014年 第2問
条件$a_1=0$,$a_{n+1}=4a_n+3 (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$がある.関数$f_n(x)$と$g(x)$が
\[ \begin{array}{l}
f_n(x)=a_nx^2+a_n+1 \\
g(x)=x^3+3x^2-9x+4 \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \]
で定義されるとき,次の問いに答えよ.

(1)数列$\{a_n\}$の一般項を求めよ.また,$\displaystyle \sum_{k=1}^n a_k$を求めよ.
(2)関数$y=|f_2(x)-g(x)|$のグラフをかけ.また,$-3 \leqq x \leqq 3$の範囲で$y$の値の最大値とそのときの$x$の値を求めよ.
スポンサーリンク

「数列の和」とは・・・

 まだこのタグの説明は執筆されていません。