タグ「数列」の検索結果

1ページ目:全826問中1問~10問を表示)
東京大学 国立 東京大学 2016年 第4問
以下の問いに答えよ.ただし,$(1)$については,結論のみを書けばよい.

(1)$n$を正の整数とし,$3^n$を$10$で割った余りを$a_n$とする.$a_n$を求めよ.
(2)$n$を正の整数とし,$3^n$を$4$で割った余りを$b_n$とする.$b_n$を求めよ.
(3)数列$\{x_n\}$を次のように定める.
\[ x_1=1,\quad x_{n+1}=3^{x_n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
$x_{10}$を$10$で割った余りを求めよ.
一橋大学 国立 一橋大学 2016年 第2問
$\theta$を実数とし,数列$\{a_n\}$を
\[ a_1=1,\quad a_2=\cos \theta,\quad a_{n+2}=\frac{3}{2}a_{n+1}-a_n \]
により定める.すべての$n$について$a_n=\cos (n-1) \theta$が成り立つとき,$\cos \theta$を求めよ.
北海道大学 国立 北海道大学 2016年 第4問
次の問いに答えよ.

(1)次の方程式が異なる$3$つの$0$でない実数解をもつことを示せ.
\[ x^3+x^2-2x-1=0 \quad \cdots \quad ① \]
(2)方程式$①$の$3$つの実数解を$s,\ t,\ u$とし,数列$\{a_n\}$を
\[ a_n=\frac{s^{n-1}}{(s-t)(s-u)}+\frac{t^{n-1}}{(t-u)(t-s)}+\frac{u^{n-1}}{(u-s)(u-t)} \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.このとき,
\[ a_{n+3}+a_{n+2}-2a_{n+1}-a_n=0 \quad (n=1,\ 2,\ 3,\ \cdots) \]
が成り立つことを示せ.
(3)$(2)$の$a_n$がすべて整数であることを示せ.
名古屋工業大学 国立 名古屋工業大学 2016年 第2問
数列$\{a_n\}$は
\[ a_1=4,\quad a_{n+1}=\frac{(3n+4)a_n-9n-6}{(n+1)a_n-3n-1} \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たす.

(1)すべての自然数$n$に対し,$a_n>3$であることを示せ.
(2)$\displaystyle b_n=\frac{1}{a_n-3}$とおく.$b_{n+1}$を$b_n$と$n$の式で表せ.
(3)$(2)$で定めた数列$\{b_n\}$に対し$c_n=b_{n+1}-b_n$とおく.数列$\{c_n\}$の一般項を求めよ.
(4)数列$\{a_n\}$の一般項を求めよ.
埼玉大学 国立 埼玉大学 2016年 第2問
$\displaystyle f(x)=\frac{3^x-1}{3^x+1},\ g(x)=\frac{x^2+4x+1}{2(x^2+x+1)}$とする.次の問いに答えよ.

(1)$g(f(x))=f(2x+1)$が成り立つことを示せ.
(2)数列$\{a_n\}$を
\[ a_1=1,\quad a_{n+1}=2a_n+1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
により定め,数列$\{b_n\}$を
\[ b_1=\frac{1}{2},\quad b_{n+1}=g(b_n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
により定める.

\mon[(ア)] $b_n=f(a_n) (n=1,\ 2,\ 3,\ \cdots)$が成り立つことを数学的帰納法を用いて示せ.
\mon[(イ)] 数列$\{a_n\},\ \{b_n\}$の一般項をそれぞれ求めよ.
\mon[(ウ)] $\displaystyle \lim_{n \to \infty} b_n$を求めよ.
東京海洋大学 国立 東京海洋大学 2016年 第1問
数列$\{a_n\},\ \{b_n\}$を以下で定める.


$a_1=2,\quad b_1=1$

$\left\{ \begin{array}{l}
a_{n+1}=2a_n+3b_n \\
b_{n+1}=a_n+2b_n
\end{array} \right. \quad (n=1,\ 2,\ 3,\ \cdots)$



(1)$n=1,\ 2,\ 3,\ \cdots$について,


$a_n+\sqrt{3}b_n={(2+\sqrt{3})}^n$

$a_n-\sqrt{3}b_n={(2-\sqrt{3})}^n$


が成り立つことを示せ.

(2)$\displaystyle \frac{b_n}{a_n}$を$n$を用いて表せ.

(3)数列$\{e_n\}$を
\[ e_n=\frac{\sqrt{3} \, b_n}{a_n}-1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定めるとき,$n \geqq 3$ならば
\[ |e_n|<0.001 \]
であることを示せ.ただし,$\displaystyle 0.071<\frac{2-\sqrt{3}}{2+\sqrt{3}}<0.072$を用いてもよい.
広島大学 国立 広島大学 2016年 第5問
数列
\[ x_n=2^n \quad (n=0,\ 1,\ 2,\ \cdots) \]
を考える.この数列は$1,\ 2,\ 4,\ 8,\ 16,\ 32,\ 64,\ 128,\ 256,\ \cdots$であるが,各項の下$1$桁をみると,$1,\ 2,\ 4,\ 8,\ 6,\ 2,\ 4,\ 8,\ 6,\ \cdots$となっており,$2$から循環が始まり循環の周期は$4$である.次の問いに答えよ.

(1)数列$\{x_n\}$の各項の下$2$桁は,あるところから循環する.循環が始まるところと,循環の周期を求めよ.ここで,$1$桁の数に対しては$0$を補って下$2$桁とみなすことにする.たとえば,$2$の下$2$桁は$02$とする.
(2)$4$の倍数で,$25$で割って$1$余る$2$桁の自然数$A$を求めよ.
(3)$8$の倍数で,$125$で割って$1$余る$3$桁の自然数$B$を求めよ.
(4)数列$\{x_n\}$の各項の下$3$桁は,あるところから循環する.循環が始まるところと,循環の周期を求めよ.ここで,$2^m$を$125$で割って$1$余るような最小の自然数$m$が$100$であることを用いてもよい.
名古屋大学 国立 名古屋大学 2016年 第4問
次の問に答えよ.ただし$2$次方程式の重解は$2$つと数える.

(1)次の条件$(*)$を満たす整数$a,\ b,\ c,\ d,\ e,\ f$の組をすべて求めよ.
\[ (*) \left\{ \begin{array}{l}
\text{$2$次方程式$x^2+ax+b=0$の$2$つの解が$c,\ d$である.} \\
\text{$2$次方程式$x^2+cx+d=0$の$2$つの解が$e,\ f$である.} \\
\text{$2$次方程式$x^2+ex+f=0$の$2$つの解が$a,\ b$である.}
\end{array} \right. \]
(2)$2$つの数列$\{a_n\},\ \{b_n\}$は,次の条件$(**)$を満たすとする.

\mon[$(**)$] すべての正の整数$n$について,$a_n,\ b_n$は整数であり,$2$次方程式$x^2+a_nx+b_n=0$の$2$つの解が$a_{n+1},\ b_{n+1}$である.

このとき,

(i) 正の整数$m$で,$|b_m|=|b_{m+1|}=|b_{m+2|}=\cdots$となるものが存在することを示せ.
(ii) 条件$(**)$を満たす数列$\{a_n\},\ \{b_n\}$の組をすべて求めよ.
金沢大学 国立 金沢大学 2016年 第1問
数列$\{a_n\}$と$\{b_n\}$は
\[ \left\{ \begin{array}{l}
a_1=b_1=2, \phantom{\displaystyle\frac{[ ]}{[ ]}} \\
\displaystyle a_{n+1}=\frac{\sqrt{2}}{4}a_n-\frac{\sqrt{6}}{4}b_n,\quad b_{n+1}=\frac{\sqrt{6}}{4}a_n+\frac{\sqrt{2}}{4}b_n \quad (n=1,\ 2,\ 3,\ \cdots) \phantom{\displaystyle\frac{[ ]}{[ ]}}
\end{array} \right. \]
を満たすものとする.$a_n$を実部とし$b_n$を虚部とする複素数を$z_n$で表すとき,次の問いに答えよ.

(1)$z_{n+1}=wz_n$を満たす複素数$w$と,その絶対値$|w|$を求めよ.
(2)複素数平面上で,点$z_{n+1}$は点$z_n$をどのように移動した点であるかを答えよ.
(3)数列$\{a_n\}$と$\{b_n\}$の一般項を求めよ.
(4)複素数平面上の$3$点$0,\ z_n,\ z_{n+1}$を頂点とする三角形の周と内部を黒く塗りつぶしてできる図形を$T_n$とする.このとき,複素数平面上で$T_1,\ T_2,\ \cdots,\ T_n,\ \cdots$によって黒く塗りつぶされる領域の面積を求めよ.
三重大学 国立 三重大学 2016年 第3問
数列$\{x_n\}$は
\[ (n-1)x_{n+2}-(n^2+n-1)x_{n+1}+n^2x_n=0 \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすものとする.

(1)$x_2$を$x_1$で表せ.また$x_4$を$x_1$と$x_3$で表せ.
(2)$y_n=x_{n+2}-x_{n+1} (n=1,\ 2,\ 3,\ \cdots)$とおく.$y_n$を$y_1$と$n$で表せ.

(3)数学的帰納法で$\displaystyle \sum_{k=1}^n k(k!)=(n+1)!-1$を示せ.

(4)$x_{n+2} (n=2,\ 3,\ 4,\ \cdots)$を$x_1,\ x_3$と$n$で表せ.
スポンサーリンク

「数列」とは・・・

 まだこのタグの説明は執筆されていません。